【控制】基于遗传算法的PID控制器增益的实现附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

**摘要:**比例积分微分 (PID) 控制器作为工业控制领域应用最为广泛的技术之一,其性能很大程度上依赖于合适的增益参数设置。传统的手动整定方法耗时费力,且难以适应复杂多变的控制对象。本文探讨了一种基于遗传算法 (GA) 的PID控制器增益优化方法。通过将PID参数编码为GA的个体,并利用GA的全局搜索能力,自动寻找最佳的PID增益组合,以实现系统性能的最优化。本文将详细阐述GA-PID控制器的设计原理、算法流程,并讨论其优势和局限性,展望其在未来智能控制领域的应用前景。

**关键词:**PID控制器,遗传算法,增益整定,优化控制,智能控制

引言

在工业自动化领域,PID控制器凭借其结构简单、鲁棒性强和易于实现等优点,长期占据着主导地位。然而,PID控制器的性能表现受到三个关键增益参数(比例增益Kp,积分增益Ki,微分增益Kd)的影响,合适的增益参数能够保证系统响应的快速性、稳定性以及精度。传统的PID参数整定方法,如经验试凑法、临界比例法等,往往依赖于工程师的经验和大量的试错过程,效率低下且难以应对复杂非线性、时变系统的控制需求。

随着计算能力的提升和人工智能技术的快速发展,基于优化算法的PID参数整定方法逐渐成为研究热点。遗传算法(Genetic Algorithm,GA)作为一种模拟生物进化过程的全局优化算法,具有强大的搜索能力和良好的鲁棒性,适用于解决复杂问题的参数优化。将GA应用于PID控制器增益的优化,可以克服传统整定方法的局限性,实现自动、高效的PID参数整定,提高控制系统的性能。

PID控制器原理与传统增益整定方法

PID控制器通过对偏差信号(设定值与实际值之间的差值)进行比例、积分和微分运算,产生控制信号驱动执行机构,最终实现系统输出对设定值的跟踪。其控制规律可以用以下公式表示:

 

scss

u(t) = Kp * e(t) + Ki * ∫e(t)dt + Kd * de(t)/dt

其中:

  • u(t) 为控制信号

  • e(t) 为偏差信号

  • Kp 为比例增益,影响系统的响应速度和稳态误差

  • Ki 为积分增益,消除系统的稳态误差

  • Kd 为微分增益,抑制系统的超调和振荡

传统PID增益整定方法主要包括:

  • 经验试凑法: 依据经验,不断调整Kp、Ki、Kd三个参数,观察系统响应,直至满足性能指标要求。该方法依赖经验,效率低下,且难以找到全局最优解。

  • 临界比例法: 首先将Ki和Kd设置为零,然后逐步增大Kp,直至系统出现等幅振荡。记录此时的Kp值为临界比例增益Kcr和振荡周期Tcr,然后根据经验公式计算Kp、Ki和Kd的初始值。该方法适用于线性系统,对非线性系统效果较差。

  • Ziegler-Nichols 方法: 与临界比例法类似,也基于系统的临界状态进行参数整定,但提出了不同的参数计算公式。

这些传统方法的共同缺点是,难以适应复杂系统和在线调整,对于时变、非线性以及多变量耦合系统,其控制效果往往难以保证。

基于遗传算法的PID控制器增益优化

遗传算法是一种模拟自然选择和遗传机制的全局优化算法。其核心思想是通过选择、交叉和变异等操作,不断迭代优化种群中的个体,最终找到问题的最优解。将GA应用于PID控制器增益的优化,其主要步骤如下:

  1. **编码:**将PID控制器的三个增益参数Kp、Ki、Kd编码成GA的个体(染色体)。常用的编码方式有二进制编码、实数编码等。实数编码直接将Kp、Ki、Kd的值作为基因,更容易实现和理解。

  2. **初始化种群:**随机生成一组个体,组成初始种群。种群规模的大小影响着算法的搜索能力,种群规模过小容易陷入局部最优,种群规模过大则会增加计算复杂度。

  3. **适应度函数评估:**根据预设的性能指标,计算每个个体的适应度值。适应度值反映了个体在解决问题中的优劣程度。常用的性能指标包括:

    选择合适的性能指标,可以更好地指导GA寻找最佳的PID参数组合。

    • 积分绝对误差 (IAE): IAE = ∫|e(t)|dt,反映系统的跟踪精度。

    • 积分平方误差 (ISE): ISE = ∫e(t)²dt,对大误差更敏感,有利于抑制超调。

    • 积分时间绝对误差 (ITAE): ITAE = ∫t|e(t)|dt,强调响应速度和稳定性。

    • 积分时间平方误差 (ITSE): ITSE = ∫te(t)²dt,综合考虑响应速度、稳定性和精度。

  4. **选择:**根据个体的适应度值,选择优秀的个体进入下一代。常用的选择方法有轮盘赌选择、锦标赛选择等。轮盘赌选择基于适应度值的大小赋予个体不同的选择概率,适应度值越大的个体被选中的概率越高。

  5. **交叉:**将选择出来的个体进行交叉操作,产生新的个体。交叉操作模拟了生物遗传中的基因重组过程,能够有效地扩大搜索空间。常用的交叉方法有单点交叉、多点交叉、均匀交叉等。

  6. **变异:**以一定的概率对个体中的基因进行变异操作,引入新的基因组合,防止算法陷入局部最优。常用的变异方法有均匀变异、高斯变异等。

  7. **迭代:**重复步骤3-6,直到满足终止条件。常用的终止条件包括:达到最大迭代次数、找到满足性能指标要求的个体、种群的平均适应度值不再显著提高等。

  8. **解码:**将最终得到的个体解码成PID的增益参数Kp、Ki、Kd。

GA-PID控制器的优势与局限性

与传统的PID增益整定方法相比,GA-PID控制器具有以下优势:

  • **全局优化能力:**GA具有强大的全局搜索能力,能够找到最优或接近最优的PID参数组合,避免陷入局部最优。

  • **自适应性:**GA能够根据系统的变化自动调整PID参数,实现自适应控制。

  • **鲁棒性:**GA对系统模型的依赖性较低,具有良好的鲁棒性,能够应对复杂、非线性以及时变系统的控制需求。

  • **自动化:**GA能够实现PID参数的自动整定,减少人工干预,提高工作效率。

然而,GA-PID控制器也存在一些局限性:

  • **计算复杂度:**GA需要进行大量的迭代运算,计算复杂度较高,对硬件资源要求较高。

  • **参数设置:**GA的性能受到种群规模、交叉概率、变异概率等参数的影响,需要合理设置这些参数才能保证算法的有效性。

  • **收敛速度:**GA的收敛速度相对较慢,需要较长的计算时间才能找到最优解。

  • 在线整定的挑战: 在线整定可能会导致系统的不稳定,需要谨慎设计,避免对生产过程产生不良影响。

⛳️ 运行结果

🔗 参考文献

[1] 秦国经,任庆昌.基于遗传算法寻优的PID控制与仿真[J].中国西部科技, 2011, 10(11):3.DOI:10.3969/j.issn.1671-6396.2011.11.005.

[2] 赵亮,付兴武,徐广明.基于遗传算法的PID控制及其MATLAB仿真[J].微计算机信息, 2004, 20(5):2.DOI:10.3969/j.issn.1008-0570.2004.05.010.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值