✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
多型机器人臂,作为工业自动化和机器人技术领域的重要组成部分,凭借其灵活的结构和广泛的应用前景,受到了广泛的关注。与传统机器人臂相比,多型机器人臂在连杆数量、关节类型和结构布局等方面拥有更大的自由度,能够适应更加复杂的工作环境和完成更加精细的操作任务。然而,这种灵活性也带来了运动学分析上的挑战,尤其是在缺乏球形手腕的情况下。本文将深入探讨多型机器人臂的运动学分析,重点关注无球形手腕结构的复杂性及其解决方案。
引言
机器人臂的运动学分析主要包括正运动学和逆运动学两个方面。正运动学是指已知机器人臂的关节角度,计算末端执行器的位姿(位置和姿态);逆运动学则是指已知末端执行器的位姿,计算机器人臂的关节角度。对于多型机器人臂而言,正运动学相对简单,可以通过连续矩阵变换来实现。然而,逆运动学却异常复杂,由于其解的多样性和复杂性,往往需要采用数值方法或特殊的解析技巧来求解。
球形手腕结构,由三个互相垂直的旋转关节组成,可以将末端执行器的姿态与位置解耦,从而简化了逆运动学的计算。然而,并非所有机器人臂都采用球形手腕结构。缺乏球形手腕的多型机器人臂,其位置和姿态之间存在耦合关系,使得逆运动学的求解更加困难。
正运动学分析
多型机器人臂的正运动学分析通常采用Denavit-Hartenberg (D-H) 参数法。D-H 参数法通过四个参数来描述相邻两个连杆之间的关系:连杆长度 (a),连杆扭角 (α),关节角 (θ),连杆偏移 (d)。
通过建立机器人臂每个连杆的坐标系,并利用D-H参数建立相邻坐标系之间的变换矩阵,可以最终推导出末端执行器相对于基坐标系的变换矩阵。该变换矩阵包含了末端执行器的位置向量和姿态矩阵,从而实现了正运动学求解。
正运动学的计算步骤如下:
- 建立D-H参数表:
根据机器人臂的结构,确定每个连杆的D-H参数。
- 计算每个连杆的变换矩阵:
利用D-H参数,计算相邻连杆坐标系之间的变换矩阵
Ai = Rot(z, θi) Trans(0, 0, di) Trans(ai, 0, 0) Rot(x, αi)
。 - 计算末端执行器相对于基坐标系的变换矩阵:
将所有连杆的变换矩阵相乘,得到末端执行器相对于基坐标系的变换矩阵
T = A1 * A2 * ... * An
。 - 提取末端执行器的位置和姿态信息:
从变换矩阵 T 中提取末端执行器的位置向量和姿态矩阵。
逆运动学分析的挑战 (无球形手腕)
缺乏球形手腕的多型机器人臂的逆运动学求解面临着以下主要挑战:
- 解的多样性:
对于给定的末端执行器位姿,可能存在多个关节角度配置能够实现该位姿,这使得逆运动学方程的求解变得复杂。
- 耦合性:
位置和姿态之间存在强耦合关系,无法独立控制,需要同时求解。
- 奇异性:
在某些特殊的关节配置下,机器人臂会失去某些方向的运动能力,导致逆运动学方程无解或解不唯一。
- 方程的非线性:
逆运动学方程通常是非线性的,难以获得解析解。
解决逆运动学问题的常用方法
针对无球形手腕的多型机器人臂的逆运动学问题,常用的解决方法主要包括以下几种:
-
解析解法: 对于一些具有特殊结构的多型机器人臂,可以推导出逆运动学方程的解析解。解析解法通常具有计算速度快、精度高的优点,但是适用范围有限。推导解析解的过程往往需要巧妙地利用三角函数关系和几何约束,并进行简化和分解。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇