作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
摘要: 振动现象作为自然界和工程领域中普遍存在的现象,其特性对于理解和预测系统的动态行为至关重要。本文旨在深入探讨不同类型的振动——自由振动、阻尼振动和强制阻尼振动——的位移特性、放大系数以及传递率。通过对这些关键概念的解析,可以更好地理解系统在各种激励条件下的响应,为减振、隔振和控制系统的设计提供理论基础。位移图直观展示了物体随时间的位置变化,放大系数则量化了系统对激励的响应强度,而传递率则描述了系统如何将激励能量传递给支撑结构。理解并掌握这些概念,对于解决实际工程问题具有重要的指导意义。
引言: 振动是物体或系统在平衡位置附近往复运动的现象,其在机械、土木、航空航天等领域中无处不在。根据系统是否受到外部激励以及是否存在能量耗散,振动可分为自由振动、阻尼振动和强制阻尼振动。自由振动是系统在不受外部激励作用下,仅在初始扰动或初始能量作用下产生的振动;阻尼振动则考虑了系统内部或外部的能量耗散,使得振动振幅随时间衰减;而强制阻尼振动则是在存在阻尼的同时,系统还受到外部周期性或非周期性激励的作用。对于不同类型的振动,其运动规律、响应特性以及能量传递方式各不相同。位移图、放大系数和传递率是描述和分析这些振动特性的重要工具,对深入理解振动现象、进行系统设计和故障诊断具有不可替代的作用。
一、 位移图:振动状态的直观描绘
位移图,即物体或系统质点随时间变化的位移曲线,是分析振动最基本和最直观的方法之一。通过位移图,我们可以清晰地观察到振动的周期、频率、振幅、初相位以及随着时间的推移振幅的变化规律。
1.1 自由振动的位移图:
理想的自由振动,即不考虑任何阻尼的情况,其位移图是一条等幅正弦或余弦曲线。在位移图上,表现为振幅恒定,周期恒定。现实中理想的自由振动并不存在,总会存在微弱的阻尼。然而,在分析系统的固有特性时,通常会先忽略阻尼,进行自由振动分析以确定系统的固有频率。位移图在这种情况下能够清晰地展示系统的固有振荡频率,为后续阻尼和强制振动分析提供基准。
1.2 阻尼振动的位移图:
考虑到阻尼后,系统的能量会逐渐耗散,导致振幅随时间衰减。阻尼振动的位移图呈现出振幅逐渐减小的特点。根据阻尼的大小,阻尼振动可以分为三种情况:
- 欠阻尼振动 (Underdamped Oscillation):
阻尼较小,系统仍然能够进行往复运动,但振幅呈指数衰减。其位移图表现为振荡波形,但每次达到最大或最小位移的绝对值逐渐减小。这是工程中常见的阻尼振动类型。
- 临界阻尼振动 (Critically Damped Oscillation):
阻尼恰好使得系统在最短时间内回到平衡位置,且不发生振荡。其位移图表现为快速衰减至平衡位置的曲线,没有振荡。这通常是理想的阻尼状态,例如在汽车减震器设计中。
- 过阻尼振动 (Overdamped Oscillation):
阻尼过大,系统回到平衡位置的速度较慢,且不发生振荡。其位移图表现为缓慢衰减至平衡位置的曲线,比临界阻尼更加平缓。
位移图能够直观地展示不同阻尼程度对振动衰减速度的影响,帮助工程师判断系统是否处于所需的阻尼状态。
1.3 强制阻尼振动的位移图:
当系统受到外部周期性激励时,即使存在阻尼,系统也会在一段时间后达到稳态振动,其频率与激励频率相同。强制阻尼振动的位移图通常包含瞬态响应和稳态响应两部分。瞬态响应是系统在刚受到激励时的响应,受系统固有特性和阻尼影响,通常会衰减;稳态响应是瞬态响应衰减后,系统以激励频率进行等幅振动的部分。位移图能够清晰地区分瞬态和稳态响应,并显示稳态振动的振幅、频率以及与激励之间的相位差。特别是在激励频率接近系统固有频率时,稳态振幅会显著增大,即发生共振。位移图在共振附近会显示出巨大的振幅。
总结: 位移图是分析和理解各种振动现象的基础。通过观察位移图的形状和变化,可以快速掌握振动的基本特性,为进一步的定量分析和设计提供直观依据。
二、 放大系数:量化响应强度
放大系数(或称为动态放大因子)是强制振动中衡量系统响应强度与静态响应强度之比的关键参数。它反映了系统在动态载荷作用下,其响应(通常指振幅)相对于承受相同大小的静态载荷时的放大程度。对于简谐激励下的单自由度阻尼系统,放大系数通常定义为稳态振动振幅与静态位移之比。
2.1 放大系数的物理意义与影响因素:
放大系数的大小直接反映了系统对外部激励的敏感程度。当放大系数大于1时,表示系统的动态响应大于静态响应,存在放大效应;当放大系数小于1时,表示系统的动态响应小于静态响应,存在衰减效应。
从放大系数的表达式可以看出,影响放大系数的主要因素是频率比 rr 和阻尼比 ζζ。
2.2 放大系数曲线:
将放大系数 MM 作为频率比 rr 的函数绘制成曲线,称为放大系数曲线或频率响应曲线。放大系数曲线能够清晰地展示不同频率比下系统的响应特性以及阻尼对响应的影响。共振峰值出现在频率比接近1的位置,峰值高度随着阻尼比的增大而减小。通过分析放大系数曲线,可以预测系统在不同激励频率下的响应,为系统的设计和优化提供依据。例如,在设计需要避免共振的结构时,需要调整系统的固有频率或增加阻尼,以减小共振时的放大系数。
总结: 放大系数是衡量强制振动响应强度与静态响应强度之比的重要参数,其大小取决于频率比和阻尼比。理解放大系数及其影响因素,对于预测系统在动态载荷下的响应,避免共振带来的破坏性影响至关重要。
三、 传递率:衡量能量传递效率
传递率是描述系统将激励能量传递给支撑结构或基础的重要参数。在隔振系统中,我们通常希望减小传递率,以降低支撑结构承受的动载荷。传递率可以从力和位移两个方面进行定义。
3.1 力传递率 (Force Transmissibility):
力传递率定义为系统传递给支撑结构的力(通常指基础反力)的幅值与激励力幅值之比。对于简谐激励下的单自由度阻尼系统,传递给基础的力由弹簧力和阻尼力组成。
3.3 传递率的物理意义与影响因素:
传递率的大小反映了系统将激励能量传递给支撑结构的效率。传递率越大,传递的能量越多;传递率越小,传递的能量越少。在隔振应用中,我们希望在工作频率下,传递率尽可能小。
从传递率的表达式可以看出,影响传递率的主要因素也是频率比 rr 和阻尼比 ζζ。
3.4 传递率曲线:
将传递率 TT 作为频率比 rr 的函数绘制成曲线,称为传递率曲线。传递率曲线能够清晰地展示不同频率比下能量传递的效率以及阻尼对传递率的影响。在隔振设计中,通常希望将系统的固有频率设置在远低于工作频率的区域 ,并选择合适的阻尼,以实现在工作频率下较低的传递率。
总结: 传递率是衡量系统将激励能量传递给支撑结构效率的重要参数。力传递率和位移传递率反映了系统在不同激励下的能量传递特性。通过分析传递率曲线,可以指导隔振系统的设计,选择合适的刚度、质量和阻尼,以达到理想的隔振效果。
结论:
本文深入探讨了位移图、放大系数以及自由振动、阻尼振动和强制阻尼振动的传递率这三个关键概念。位移图为我们提供了直观的振动运动轨迹,帮助我们识别振动的类型和基本特征;放大系数定量地描述了强制振动中系统响应相对于静态响应的放大程度,尤其揭示了共振现象的危害;传递率则衡量了系统将激励能量传递给支撑结构的效率,是评估和设计隔振系统的核心指标。
理解和掌握这些概念及其相互关系,对于分析和解决振动问题具有至关重要的意义。在工程实践中,通过分析系统的固有特性、计算在各种激励下的放大系数和传递率,可以有效地预测系统的动态行为,设计合适的减振、隔振和控制策略,提高系统的可靠性和稳定性,避免共振带来的破坏。未来的研究可以进一步探讨多自由度系统的位移图、放大系数和传递率特性,以及非线性振动对这些参数的影响,从而更全面地理解复杂的振动现象。
⛳️ 运行结果
🔗 参考文献
[1] 杨传猛.复合阻尼结构动力学建模及振动特性研究[D].哈尔滨工程大学,2019.
[2] 刘兴天,孔祥森,申军烽,等.卫星遥感器微振动隔离用液体阻尼隔振器[J].光学精密工程, 2017, 25(9):6.DOI:10.3788/OPE.20172509.2448.
[3] 杨凯,张业伟,陈立群,等.基于非线性输出频响函数的单自由度NES系统振动传递率评价[C]//第十五届全国非线性振动暨第十二届全国非线性动力学和运动稳定性学术会议摘要集.2015.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇