✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着全球对清洁能源需求的不断增长,风能和水能作为重要的可再生能源,其联合优化运行对于提高能源利用效率、保障电力系统稳定供应具有重要意义。本文深入研究风 - 水电联合优化运行问题,详细分析风、水电的发电特性,构建联合优化运行模型,综合考虑发电成本、系统稳定性、环境效益等多目标因素,并采用智能优化算法求解模型。通过实际案例仿真,验证联合优化运行方案的有效性,为风 - 水电联合运行在电力系统中的应用提供理论依据和实践指导。
关键词
风能;水能;联合优化运行;多目标优化;智能算法
一、引言
1.1 研究背景
在应对全球气候变化和能源转型的大背景下,可再生能源在电力系统中的占比持续攀升 。风能以其资源丰富、分布广泛、环境友好等特点,成为全球能源发展的重要方向之一 。然而,风电具有明显的间歇性和波动性,其出力受风速、风向等自然因素影响较大,给电力系统的稳定运行带来了诸多挑战 。水能作为一种成熟的可再生能源,具有调节性能好、发电功率稳定等优势 。将风能与水能进行联合优化运行,利用水电的调节能力平抑风电的波动,既能充分发挥两种能源的优势,又能提高电力系统的可靠性和经济性,是实现能源可持续发展的有效途径。
1.2 研究现状
国内外学者针对风 - 水电联合运行开展了大量研究 。在运行特性分析方面,深入研究了风、水电的出力特性及相互影响规律 。在优化运行模型构建上,从早期单一目标优化逐渐发展到多目标优化,综合考虑发电成本、环境效益、系统稳定性等因素 。在求解算法方面,应用了线性规划、动态规划、智能优化算法(如遗传算法、粒子群优化算法等)来求解优化模型 。尽管已有研究取得了一定成果,但在考虑复杂的电力市场环境、多时间尺度的联合运行优化以及不确定性因素对联合运行的影响等方面仍有待进一步深入研究 。
1.3 研究目的与意义
本研究旨在通过对风 - 水电联合优化运行的深入分析,构建更加完善的联合优化运行模型,采用高效的求解算法,实现风 - 水电在不同运行场景下的最优调度,提高能源利用效率,降低电力系统运行成本,增强系统稳定性,为电力系统的可持续发展提供科学的决策支持 。
二、风、水电发电特性分析
2.1 风电发电特性
- 间歇性与波动性:风速的随机变化导致风电出力呈现明显的间歇性和波动性 。通过对大量风电历史数据的统计分析,发现风电出力在不同时间尺度上均存在较大波动,如在小时级尺度上,风电出力可能因风速突变而发生大幅变化;在日尺度上,受昼夜温差等因素影响,风电出力也有明显差异 。
- 预测难度大:由于风速受复杂气象条件的综合影响,目前风电功率预测的精度仍有待提高 。常用的风电功率预测方法包括基于物理模型的预测、基于统计模型的预测以及两者结合的混合预测方法,但在实际应用中,预测误差仍然不可忽视,这给电力系统的调度运行带来了较大困难 。
2.2 水电发电特性
- 调节性能好:水电站可通过调节水库的水位来控制发电流量,从而灵活调整发电功率 。根据水库的调节能力,可分为日调节、周调节、月调节和年调节等不同类型 。例如,日调节水电站能够在一天内根据电力系统负荷变化,及时调整发电功率,起到削峰填谷的作用 。
- 发电功率稳定:在一定的水头和流量条件下,水电的发电功率相对稳定,能够为电力系统提供可靠的电力支撑 。同时,水电的启动和停止迅速,响应速度快,可快速适应系统负荷的变化 。
2.3 风 - 水电联合运行互补特性
- 时间互补性:在时间分布上,风电和水电具有一定的互补性 。例如,在某些地区,冬季风速较大,风电出力较高,但水电因河流来水减少而发电能力受限;夏季则相反,河流来水丰富,水电出力增加,而风速相对较小,风电出力降低 。通过联合运行,可充分利用这种时间互补性,实现能源的高效利用 。
- 调节互补性:水电的调节能力可有效平抑风电的波动 。当风电出力突然增加时,水电可适当减少发电功率,维持系统功率平衡;当风电出力下降时,水电迅速增加发电功率,保障电力供应的稳定性 。这种调节互补性能够显著提高电力系统应对风电不确定性的能力 。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
[1] 周秋慧.天然气冷热电联供能源系统运行机制优化分析[D].北京交通大学,2014.DOI:10.7666/d.Y2603135.
[2] 曾庆雄,蔡龙俊.基于全局能耗的空调水系统运行策略的优化分析[J].建筑节能, 2010(3):4.DOI:CNKI:SUN:FCYY.0.2010-03-015.
[3] 肖欣,周渝慧,何时有,等.含流域梯级水电的水火风互补发电系统联合运行优化[J].电力自动化设备, 2018, 38(2):9.DOI:10.16081/j.issn.1006-6047.2018.02.013.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇