
AIDD
文章平均质量分 81
药研猿
分享分子动力学模拟、CADD等相关内容
展开
-
DeePNAP:一秒预测蛋白-DNA/蛋白-RNA结合强度
DeePNAP是一种基于机器学习的蛋白质-核酸结合预测工具,仅需输入蛋白和核酸序列即可快速预测结合亲和力(KD值)和突变自由能变化(ΔΔG)。该模型在14401个数据条目上训练,预测KD时平均皮尔逊相关系数达0.86-0.93,精度优于同类工具。支持DNA/RNA序列输入及多种突变格式分析(单点突变、缺失、多点突变等),计算过程仅需1秒。用户可通过在线平台http://14.139.174.41:8080/input_page 免费使用,结果包含KD、KA、ΔG和ΔΔG等关键参数解读。该成果发表于《Jour原创 2025-05-28 19:52:38 · 1011 阅读 · 0 评论 -
PPI-ID: 德克萨斯大学研究团队最新款蛋白-蛋白互作(PPI)预测工具上线
PPI-ID(Protein-Protein Interaction Identifier)是由美国德克萨斯大学奥斯汀分校的Haley V. Goodwin和Nigel S. Atkinson开发的一款工具,旨在预测蛋白质间的潜在相互作用界面。该工具整合了ELM、3did、Interpro和DOMINE等数据库信息,通过映射蛋白质相互作用结构域和基序到分子结构上,筛选出可能相互作用的区域。PPI-ID还支持基于蛋白质序列的预测,特别是在使用AlphaFold-Multimer进行建模时,能有效识别适合的相互原创 2025-05-09 18:04:09 · 435 阅读 · 0 评论 -
ProteinTools辅助探索蛋白稳定性、动态调控以及结构关系
这四个模块从微观相互作用到全局结构布局,提供了丰富的数据与可视化支持,可以帮助我们更深入地理解蛋白质的稳定性、功能调控及相互作用机制。Schmidt S;原创 2025-05-06 21:09:32 · 1154 阅读 · 0 评论 -
CABS-flex 2.0:高效模拟蛋白质柔性的在线平台
在蛋白质结构功能研究中,动态柔性特性的理解至关重要。本文推荐一款高效、可靠的蛋白质柔性模拟工具 —— CABS-flex 2.0。CABS-flex 2.0 是一款专为蛋白质柔性快速模拟设计的建模工具,基于著名的CABS粗粒度建模框架开发。通过有效简化系统描述,CABS-flex 2.0 能在保持合理生物物理准确度的前提下,将蛋白质动态模拟的计算成本降低约三个数量级,大幅提升模拟效率。原创 2025-04-28 12:43:31 · 430 阅读 · 0 评论 -
收藏!盘点蛋白“活性位点”预测的网页端工具
②综合多个预测算法(COFACTOR、TM-SITE、S-SITE等)结合结构、功能注释和进化信息,预测酶的功能位点和突变热区(hot spots)①输入结构即可预测;通过机器学习预测蛋白质的结合位点(binding pockets)基于结构的蛋白质配体结合位点预测工具(整合多个算法)通过序列保守性分析预测功能位点(常用于活性位点识别)②预测催化位点、稳定性影响位点等。识别蛋白质结构中的口袋(pockets)和活性位点。②可计算结合口袋体积和位置。使用深度学习方法预测蛋白的小分子结合位点。原创 2025-04-18 10:46:58 · 828 阅读 · 0 评论 -
GeoFlow V2:首个全场景蛋白质大模型,抗体设计+binder生成+复合物结构预测(超越AF3和RFDiffusion)
GeoFlow-V2 性能表现出色。在蛋白质结构预测方面,抗体 - 抗原结构预测的 Top-1 DockQ 成功率达 45.19% ,超越众多对比方法(如AlphaFold 3, Protenix, Chai-1, Boltz),且约束条件能显著提升其性能;蛋白质 - 配体结构预测成功率为 77%;其轻量级变体在超快速抗体结构预测上,比 AlphaFold Multimer V2.3 快 150-250 倍,精度相当或更优。原创 2025-04-18 10:43:53 · 995 阅读 · 0 评论 -
Protenix:超越AlphaFold3的开源选择,性能对比及在线实操指南
这是一个旨在重现 AlphaFold3 并推动生物分子结构预测发展的,通过改进方法、提高模型性能和增强可及性,为跨学科研究提供支持。在不同分子类型的结构预测中表现出色,与 Alphafold3、Alphafold-Multimer 2.3 和 RoseTTAFold2NA 相比,Protenix 在预测蛋白质-配体、蛋白质-核酸等复合物结构上有较强性能。原创 2025-03-09 20:46:25 · 1987 阅读 · 0 评论 -
Swiss Dock:免费的在线分子对接工具(支持两种对接算法切换)
SwissDock是一款自2010年推出的免费分子对接网络服务,基于EADock DSS算法开发,用于预测靶标蛋白与小分子之间的相互作用。该平台致力于降低分子对接软件的使用门槛,使这一技术不仅限于传统的分子建模领域,还能惠及更广泛的研究人员,包括药物化学、生物医学等领域的非计算专家。SwissDock提供用户友好的在线界面,支持快速上传蛋白和小分子结构,自动完成对接计算,并可视化分析结果。其提供了两种对接算法的切换,分别是以及。前者后起之秀,后者经典老古董。原创 2025-03-29 20:57:19 · 1568 阅读 · 0 评论 -
illustrate:一款蛋白/核酸结构快速渲染为“卡通风格”的小工具
本期向大家介绍一款蛋白/核酸结构快速渲染(卡通风格)的小工具——。放心!本期完全不涉及代码,不折腾人,请放心食用。结构渲染效果示例如下:该小工具适用绘制蛋白或复合物整体轮廓,但不适合用来绘制残基侧链的相互作用。illustrate绘制的风格是我本人非常喜欢的“卡通风”。尽管Chimera也可以实现此功能,但毕竟还是要费些功夫的。illustrate则可以一键出图,丝滑~。原创 2025-03-22 20:17:06 · 366 阅读 · 0 评论 -
PRODIGY: “不折腾人”的蛋白-蛋白/蛋白-小分子结合能计算工具
PRODIGY(全称为 PROtein binDIng enerGY prediction)是一种蛋白质结合能预测工具,可利用蛋白质-蛋白质复合物的三维结构来预测其结合亲和力。PRODIGY 利用一种高效的基于接触的方法,在估计结合自由能和解离常数的同时,还能深入揭示蛋白质相互作用的结构决定因素。通过将界面接触特性与非相互作用表面特征相结合,PRODIGY 能够做出可靠的预测,这对于理解分子间相互作用、指导治疗方案的开发以及设计蛋白质复合物至关重要。原创 2025-03-22 20:15:07 · 846 阅读 · 0 评论 -
DockQ:一款评估蛋白对接接触界面质量的工具(安装+操作+参数解读)
•默认映射:DockQ 会尝试找到天然结构和模型中界面之间的最佳映射。对于同型二聚体,软件会报告具有最高 DockQ 分数的映射(如 AB -> AB 或 AB -> BA)。•完全映射:使用指定模型和天然链之间的完整映射。例如或。•部分映射:可以使用通配符进行部分映射。例如或。•限制搜索到天然界面的子集:使用或等限制搜索到特定的天然界面。原创 2025-03-16 17:45:29 · 1210 阅读 · 0 评论 -
FEP-SPell-ABFE:一个自动化计算药物与大分子绝对结合自由能的工作流
•不足之处:未来需进一步整合先进的力场,拓展工作流程对更复杂生物系统(如膜蛋白)的适用性。•意义:FEP-SPell-ABFE 工作流程实现了 ABFE 计算的自动化,准确性高、可重复性强,且对用户干预需求少。它为药物发现提供了有价值的工具,有助于高效筛选和优先排序药物候选物,推动计算药物发现领域的发展。原创 2025-03-14 11:36:24 · 796 阅读 · 0 评论 -
ESMFold对决AlphaFold:蛋白质-肽相互作用预测的新进展
•不足之处:许多生成的模型对接不正确,ESMFold 的对接准确性有待进一步提高。•意义:ESMFold 在蛋白质-肽对接中能产生可接受的模型,偶尔优于 AlphaFold 系列工具,且速度快,在高通量肽设计的一致性方法中有潜在价值;其利用序列嵌入和识别关键结合基序的能力,为蛋白质-肽对接研究提供了新方向,后续发展有望成为现有方法的有力补充,推动基于肽的治疗药物开发。原创 2025-03-12 23:25:29 · 816 阅读 · 0 评论 -
全原子 MD 结合自适应采样技术揭示 Hsp70 构象循环突变的分子机制
为人类应激诱导型 Hsp70 提供了与动力学相关的假定状态的高分辨率集合,揭示了不同核苷酸状态下构象动力学的差异,为识别新的变构位点和优化现有小分子变构调节剂提供了结构基础,有助于开发针对 Hsp70 相关疾病(如神经退行性疾病和癌症)的治疗药物。原创 2025-03-09 20:49:15 · 983 阅读 · 0 评论 -
CHARMM-GUI EnzyDocker: 一个基于网络的用于酶中多个反应状态的蛋白质 - 配体对接的计算平台
当前版本的 EnzyDocker 不支持共价对接;对于一些特殊配体,可能仍需要优化对接协议。EnzyDocker 为酶催化复杂反应的配体对接提供了一个便捷、高效的工具,使 EnzyDock 的多状态、多尺度对接能力能够更广泛地应用于生物学重要的酶促反应研究,有助于理解生物过程和设计新的治疗方法。原创 2025-02-17 14:52:38 · 1130 阅读 · 0 评论 -
深度学习的“前世今生”
20世纪50年代,人工智能派生出了这样两个学派,分别是“符号学派”及“连接学派”。前者的领军学者有Marvin Minsky及John McCarthy,后者则是由Frank Rosenblatt所领导。符号学派的人相信对机器从头编程,一个模块一个模块组合最终可以得到比人类更智慧的机器;而连接学派则选择了截然不同的道路:模仿大脑,制造大脑,最终超越人类。原创 2023-08-15 23:16:32 · 959 阅读 · 0 评论