Protenix:超越AlphaFold3的开源选择,性能对比及在线实操指南

Protenix,这是一个旨在重现 AlphaFold3 并推动生物分子结构预测发展的开源项目,通过改进方法、提高模型性能和增强可及性,为跨学科研究提供支持。在不同分子类型的结构预测中表现出色,与 Alphafold3、Alphafold-Multimer 2.3 和 RoseTTAFold2NA 相比,Protenix 在预测蛋白质-配体、蛋白质-核酸等复合物结构上有较强性能。

Image

性能比较

  • • 配体预测: 在 PoseBusters Version 2 基准测试中,Protenix 在蛋白质-配体共折叠任务上表现优于 AF3,在预测新的蛋白质-配体相互作用方面具有高精度。

  • • 蛋白质预测: 与 AF2.3 相比,Protenix 在预测蛋白质界面方面具有更高的 DockQ 成功率,在蛋白质-抗体预测方面有提升空间。

  • • 核酸预测: 在 RNA 和 DNA 目标预测中,Protenix 性能与 AF3 相当,优于 RF2NA,能准确预测新型蛋白质-核酸复合物。

  • Image

开源地址

https://github.com/bytedance/Protenix

在线使用

  • • 网址:https://protenix-serve

内容概要:本文档《信息安全领域实战项目.docx》详细介绍了网络安全渗透测试的具体步骤和实战案例。文档从信息收集开始,逐步深入到漏洞验证、漏洞攻击和权限提升等环节。首先,通过使用工具如FOFA进行资产收集,识别出目标服务器开放的多个端口,并进一步通过后台扫描工具发现潜在的敏感文件。接着,针对发现的Grafana任意文件读取漏洞(CVE-2021-43798)和ActiveMQ任意文件上传漏洞(CVE-2016-3088),分别进行了详细的漏洞验证与攻击演示,包括具体的payload构造、利用方式及攻击效果展示。最后,探讨了CVE-2021-4034 Linux polkit提权漏洞的应用场景及其利用方法。此外,文档还涵盖了政务智慧信息系统安全建设项目的背景、目标、建设内容以及相关的人才需求分析。 适合人群:具备一定网络安全基础,尤其是对渗透测试感兴趣的初学者或中级技术人员。 使用场景及目标:①帮助读者理解并掌握从信息收集到漏洞利用的完整渗透测试流程;②提供实际操作案例,使读者能够学习如何识别和利用常见的Web应用漏洞;③培养读者在面对真实世界的安全问题时,能够运用所学知识进行有效的分析和解决。 阅读建议:由于文档内容涉及较多的技术细节和实战操作,建议读者在阅读过程中结合实际环境进行练习,并参考官方文档或其他权威资料加深理解。同时,注意合法合规地使用所学技能,确保所有活动都在授权范围内进行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

药研猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值