1. CASTp
-
• 功能: 识别蛋白质结构中的口袋(pockets)和活性位点
-
• 网址: http://sts.bioe.uic.edu/castp/
-
• 特点: ①支持 PDB 结构文件上传;②提供表面积和体积计算;③可视化功能友好
2. P2Rank
-
• 功能: 通过机器学习预测蛋白质的结合位点(binding pockets)
-
• 网址: https://prankweb.cz
-
• 特点: ①快速预测;②提供结合概率评分;③可视化展示结合口袋
可参考往期详细推送:
3. COACH
-
• 功能: 基于结构的蛋白质配体结合位点预测工具(整合多个算法)
-
• 网址: https://zhanggroup.org/COACH/
-
• 特点: ①使用I-TASSER结构建模;②综合多个预测算法(COFACTOR、TM-SITE、S-SITE等)
4. ConSurf
-
• 功能: 通过序列保守性分析预测功能位点(常用于活性位点识别)
-
• 网址: https://consurf.tau.ac.il
- • 特点: ①适用于结构已知或未知的蛋白;②保守性评分与结构结合显示;③支持多种输入格式(PDB、FASTA)
5. HotSpot Wizard
-
• 功能: 结合结构、功能注释和进化信息,预测酶的功能位点和突变热区(hot spots)
-
• 网址: https://loschmidt.chemi.muni.cz/hotspotwizard/
-
• 特点: ①特别适用于酶工程;②预测催化位点、稳定性影响位点等
6. Fpocket
-
• 功能: 快速识别蛋白质小分子结合口袋
-
• 网址: https://durrantlab.pitt.edu/fpocketweb/
- • 特点: ①可离线安装,也提供web接口;②基于几何学的快速方法
离线版可参考往期详细推送:
7. DeepSite
-
• 功能: 使用深度学习方法预测蛋白的小分子结合位点
-
• 网址: https://open.playmolecule.org/tools/deepsite
-
• 特点: ①输入结构即可预测;②使用3D卷积神经网络模型;③特别适合药物靶点研究
8. POCASA
-
• 功能: 基于蛋白结构网格搜索预测蛋白活性位点
-
• 网址: http://g6altair.sci.hokudai.ac.jp/g6/service/pocasa/
-
• 特点: ①使用多球体逼近技术;②可计算结合口袋体积和位置
9. FTMap
-
• 功能: 基于碎片的对接方法识别蛋白质表面的潜在配体结合热点
-
• 网址: https://ftmap.bu.edu/serverhelp.php
-
• 特点: 广泛应用于药物靶点研究、虚拟筛选、酶口袋识别等领域
可参考往期详细推送: