单细胞 CUT&Tag 分析复杂组织中的组蛋白修饰和转录因子

本文介绍了单细胞CUT&Tag技术在解析小鼠大脑中组蛋白修饰和转录因子分布的应用。通过对不同细胞类型的单细胞分析,展示了组蛋白修饰如H3K27me3、H3K4me3的细胞群差异,并揭示了转录因子OLIG2和RAD21的结合模式。这项技术为理解复杂组织的细胞异质性和表观遗传调控提供了新视角。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

单细胞 CUT&Tag 分析

随着10X、BD等平台技术的推进,单细胞层面解析表达和开放染色质水平的研究方法已经得到很好的建立,并且在动植物种中都得到了很好的尝试。

对于研究特定组蛋白修饰或转录因子结合的染色质区域的单细胞分析在技术上具有挑战性。今天小编和大家分享一篇今年四月份发表于Nature Biotechnology 的article 《Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues》。

这篇文章使用调整了基于10x Genomics单细胞 ATAC-seq平台,开发并应用了单细胞Cut&Tag (scCUT&Tag)手段,以研究小鼠大脑中单细胞水平的组蛋白修饰谱。在之前的研究中作者发现少突胶质细胞谱系 (OLG) 具有异质性,并且能够在发育和疾病期间转变为替代细胞状态。基于此,作者构建了组蛋白修饰、染色质结构因子和cohesin复合物RAD21的亚基以及OLG特异性转录因子 (TF) OLIG2等非组蛋白的单细胞层面的结合谱。

技术路线

为了研究OLGs,作者使用了一个表达Sox10:Cre/Rosa26:(CAG-LSL-EGFP)小鼠(RCE)的小鼠模型,该模型主要标记小鼠中枢神经系统(CNS)中的OLGs。作者从P15和P25的小鼠大脑中分离细胞,同时,作者为了更加明确OLGs的分化,在P25时期做了两个重复,分别在少突胶质细胞分化的高峰和髓鞘形成的开始时,并分为GFP+和GFP−群体;分离细胞核并与抗染色质修饰或TFs的特异性抗体孵育,使用蛋白A-Tn5融合标记,用10x Genomics 的scATAC-seq协议处理。

image.png

实验技术路线

分析路线

将scCUT&Tag信号整合成一个细胞×bin的矩阵,其中,bin分成不同的大小(5kb或50kb);使用LSI和UMAP进行降维,并使用SNN进行聚类。使用细胞簇来识别标记区域,计算每个细胞的基因活性评分,并与其他数据集进行整合。

image.png

分析路线

在开始正式分析之前为了验证 scCUT&Tag 数据是否可用于分辨异质细胞群,作者制备了三种细胞系的混合物:小鼠胚胎干细胞(mESC,C57Bl/6J 来源)、小鼠胚胎成纤维细胞 (NIH-3T3) (ATCC) 和小鼠少突胶质祖细胞模型细胞系(Oli-neu)。然后使用10x Genomics Chromium 平台对标记的细胞核进行条形码标记,使用 v.1 (rep1) 和 v.1.1 (rep2) 10x Genomics scATAC–seq 试剂盒在两个技术重复中针对 H3K27me3 组蛋白修饰进行 scCUT&Tag优化,具体可以参考文章中的方法。最终获得了4,872和3,873个单细胞的H3K27me3 谱,每个细胞分别具有597和568个独特的片段。使用5-kb窗口聚合数据并为所有数据集生成单元特征矩阵。为了减少数据集的维度,作者使用了LSI及UMAP进行降维,并使用共享最近邻 (SNN) 和使用 Signac/Seurat v.3 包实现的Leiden算法对单元进行了聚类。降维和聚类产生了一个被识别为3T3细胞的簇和Oli-neu(Oli-neu_A 和 Oli-neu_B)和 mESC(mES_A 和 mESC_B)的两个亚簇(下图a)。作者的数据与其他参考数据集显示出了告诉的相似性(下图b)。同时还对前150个最可变的标记峰进行了主成分分析 (PCA),并观察到了各自的批量数据和 scCUT&Tag 数据的共聚类和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值