自动驾驶算法详解(4): 横向LQR、纵向PID控制进行轨迹跟踪以及python实现

前言

在量产ADAS或者自动驾驶算法中,横纵向控制往往都是分开控制的,上一篇文章中介绍了如何使用LQR同时进行横纵向的控制,本文将介绍一种横纵向分开控制的思路,将使用LQR算法进行横向控制,同时使用PID算法进行纵向控制。这种方法在很多自动驾驶科技公司比较常见,百度apollo的控制节点conrol也是使用同样的思路。

如果对自动驾驶算法感兴趣,可以关注我的主页和专栏。

https://blog.csdn.net/nn243823163/category_11685852.htmlhttps://blog.csdn.net/nn243823163/category_11685852.html最新文章推荐:

Apollo Planning决策规划算法代码详细解析 (1):Scenario选择

Apollo Planning决策规划算法代码详细解析 (5):规划算法流程介绍

Apollo Planning决策规划算法代码详解 (22):决策规划算法最完整介绍

自动驾驶算法详解(2): prescan联合simulink进行FCW的仿真

自动驾驶算法详解(3): LQR算法进行轨迹跟踪,lqr_speed_steering_control( )的python实现

自动驾驶算法详解(5): 贝塞尔曲线进行路径规划的python实现

 Apollo算法仿真调试(1): 使用Vscode断点调试apollo的方法

Apollo规划决策算法仿真调试(4):  动态障碍物绕行

Apollo规划决策算法仿真调试(7):pnc_map模块详解GetRouteSegments规划局部地图生成下篇_

正文如下:

一、横向LQR问题模型建立:

理论部分比较成熟,这里只介绍demo所使用的建模方程:

使用离散代数黎卡提方程求解

系统状态矩阵与LQR同时控制横纵向相比有所简化,状态矩阵如下,X = [距离差,距离差导数,角度差,角度差导数]:

输入矩阵变为1个变量,只有前轮转角。

A矩阵和B矩阵如下:

二、纵向PID控制

纵向上由PID算法来计算加速度,本demo中只保留P项:

三、结果分析

从状态更新的方法可以看到,纵向控制的速度会影响横向控制的结果

1、纵向参数P = 1 时的控制结果:

速度控制结果:

轨迹跟踪结果:

2、纵向参数P = 5 时的控制结果:

速度控制结果:

轨迹跟踪结果:

3、纵向参数P = 20时的控制结果:

速度控制结果:

轨迹跟踪结果:

4、纵向参数P = 30时的控制结果:

速度控制结果:

四、代码实现

1、参数初始化

Kp = 1.0 # speed proportional gain


# LQR parameter
Q = np.eye(4)
R = np.eye(1)


# parameters
dt = 0.1 # time tick[s]
L = 0.5 # Wheel base of the vehicle [m]
max_steer = np.deg2rad(45.0) # maximum steering angle[rad]


show_animation = True
#  show_animation = False

2、相关函数定义

def PIDControl(target, current):
    a = Kp * (target - current)
 return a



def lqr_steering_control(state, cx, cy, cyaw, ck, pe, pth_e):
    ind, e = calc_nearest_index(state, cx, cy, cyaw)


    k = ck[ind]
    v = state.v
    th_e = pi_2_pi(state.yaw - cyaw[ind])


    A = np.zeros((4, 4))
    A[0, 0] = 1.0
    A[0, 1] = dt
    A[1, 2] = v
    A[2, 2] = 1.0
    A[2, 3] = dt
 # print(A)


    B = np.zeros((4, 1))
    B[3, 0] = v / L


    K, _, _ = dlqr(A, B, Q, R)


    x = np.zeros((4, 1))


    x[0, 0] = e
    x[1, 0] = (e - pe) / dt
    x[2, 0] = th_e
    x[3, 0] = (th_e - pth_e) / dt


    ff = math.atan2(L * k, 1)
    fb = pi_2_pi((-K @ x)[0, 0])


    delta = ff + fb


 return delta, ind, e, th_e



def closed_loop_prediction(cx, cy, cyaw, ck, speed_profile, goal):
    T = 500.0 # max simulation time
    goal_dis = 0.3
    stop_speed = 0.05


    state = State(x=-0.0, y=-0.0, yaw=0.0, v=0.0)


    time = 0.0
    x = [state.x]
    y = [state.y]
    yaw = [state.yaw]
    v = [state.v]
    t = [0.0]


    e, e_th = 0.0, 0.0


 while T >= time:
        dl, target_ind, e, e_th = lqr_steering_control(
            state, cx, cy, cyaw, ck, e, e_th)


        ai = PIDControl(speed_profile[target_ind], state.v)
        state = update(state, ai, dl)


 if abs(state.v) <= stop_speed:
            target_ind += 1


        time = time + dt


 # check goal
        dx = state.x - goal[0]
        dy = state.y - goal[1]
 if math.hypot(dx, dy) <= goal_dis:
 print("Goal")
 break


        x.append(state.x)
        y.append(state.y)
        yaw.append(state.yaw)
        v.append(state.v)
        t.append(time)


 if target_ind % 100 == 0 and show_animation:
            plt.cla()
 # for stopping simulation with the esc key.
            plt.gcf().canvas.mpl_connect('key_release_event',
 lambda event: [exit(0) if event.key == 'escape' else None])
            plt.plot(cx, cy, "-r", label="course")
            plt.plot(x, y, "ob", label="trajectory")
            plt.plot(cx[target_ind], cy[target_ind], "xg", label="target")
            plt.axis("equal")
            plt.grid(True)
            plt.title("speed[km/h]:" + str(round(state.v * 3.6, 2))
 + ",target index:" + str(target_ind))
            plt.pause(0.0001)


 return t, x, y, yaw, v

3、主函数

def main():
 print("LQR steering control tracking start!!")
#     ax = [0.0, 6.0, 12.5, 10.0, 7.5, 3.0, -1.0]
#     ay = [0.0, -3.0, -5.0, 6.5, 3.0, 5.0, -2.0]


    ax = [0.0, 6.0, 12.5, 10.0, 17.5, 20.0, 25.0]
    ay = [0.0, -3.0, -5.0, 6.5, 3.0, 0.0, 0.0]
 
    goal = [ax[-1], ay[-1]]


    cx, cy, cyaw, ck, s = calc_spline_course(
        ax, ay, ds=0.1)
    target_speed = 10.0 / 3.6 # simulation parameter km/h -> m/s


    sp = calc_speed_profile(cx, cy, cyaw, target_speed)


    t, x, y, yaw, v = closed_loop_prediction(cx, cy, cyaw, ck, sp, goal)


 if show_animation: # pragma: no cover
        plt.close()
        plt.subplots(1)
        plt.plot(ax, ay, "xb", label="input")
        plt.plot(cx, cy, "-r", label="spline")
        plt.plot(x, y, "-g", label="tracking")
        plt.grid(True)
        plt.axis("equal")
        plt.xlabel("x[m]")
        plt.ylabel("y[m]")
        plt.legend()
 
        plt.show()
  • 9
    点赞
  • 128
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
自动驾驶决策和控制算法自动驾驶系统中的重要组成部分。它们负责根据感知到的环境信息,进行实时的决策和控制,以实现安全、高效的驾驶行为。 决策算法主要负责根据车辆周围的感知信息,如传感器数据、地图数据等,进行场景理解、目标识别和行为预测。常见的决策算法包括基于规则的算法和基于机器学习的算法。其中,基于规则的算法使用预定义的规则和逻辑来进行决策,例如优先让行、避让障碍物等。而基于机器学习的算法则通过训练模型来学习从感知数据到决策行为的映射关系,如深度学习算法和强化学习算法控制算法主要负责根据决策结果,生成车辆的控制命令,如油门、刹车、转向等。常见的控制算法包括经典的PID算法LQR算法和MPC算法PID算法是一种基于误差和误差变化率的反馈控制算法,用于实现车辆的稳定行驶。而LQR算法则通过优化控制理论来设计最优的控制器。MPC算法则通过对未来的状态和控制命令进行优化,以实现车辆的轨迹跟踪和动态规划。 总结起来,自动驾驶决策和控制算法是通过对感知信息进行分析和处理,实现对车辆行为的决策和控制的关键算法。这些算法包括决策算法控制算法,其中决策算法负责根据感知信息进行场景理解和行为预测,控制算法负责根据决策结果生成车辆的控制命令。这些算法的设计和优化是实现安全、高效自动驾驶的关键。<span class="em">1</span><span class="em">2</span><span class="em">3</span><span class="em">4</span>

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

自动驾驶Player

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值