mscnn人群密度估计模型实现

本项目为人群计数的开源项目,实现了一种基于多尺度卷积神经网络的人群计数方法。该模型已在ShanghaiTech数据集上进行了验证,并提供了训练和评估的详细步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

mscnn crowd counting model

=======

github

License

Introduction

This is open source project for crowd counting. Implement with paper “Multi-scale Convolution Neural Networks for Crowd Counting” write by Zeng L, Xu X, Cai B, et al. For more details, please refer to our arXiv paper.

The implementation code of mscnn crowd counting model, please click on github.

multi-scale block

mscnn_model

mscnn_architecture

result_display

result_table

Contents

  1. Installation
  2. Preparation
  3. Train/Eval
  4. Details

Installation

  1. Configuration requirements
python3.x

Please using GPU, suggestion more than GTX960

python-opencv
#tensorflow-gpu==1.0.0
#tensorflow==1.0.0
matplotlib==2.2.2
numpy==1.14.2

conda install -c https://conda.binstar.org/menpo opencv3
pip install -r requirements.txt
2. Get the code
git clone https://github.com/Ling-Bao/mscnn
cd mscnn
### Preparation 1. ShanghaiTech Dataset. ShanghaiTech Dataset makes by Zhang Y, Zhou D, Chen S, et al. For more detail, please refer to paper “Single-Image Crowd Counting via Multi-Column Convolutional Neural Network” and click on [here](https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhang_Single-Image_Crowd_Counting_CVPR_2016_paper.pdf). 2. Get dataset and its corresponding map label [Baidu Yun](https://pan.baidu.com/s/12EqB1XDyFBB0kyinMA7Pqw) Password: sags 3. Unzip dataset to mscnn root directory
 tar -xzvf  Data_original.tar.gz
### Train/Eval Train is easy, just using following step. 1. Train. Using [mscnn_train.py](mscnn_train.py) to evalute mscnn model
python mscnn_train.py
2. Eval. Using [mscnn_eval.py](mscnn_eval.py) to evalute mscnn model
python mscnn_eval.py
### Details 1. Improving model structure. Add Batch Normal after each convolution layer. 2. Improving activation funtion for last layer to adapt crowd counting map estimation.

formulation

=======
License

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值