mscnn人群密度估计模型实现

mscnn crowd counting model

=======

github

License

Introduction

This is open source project for crowd counting. Implement with paper “Multi-scale Convolution Neural Networks for Crowd Counting” write by Zeng L, Xu X, Cai B, et al. For more details, please refer to our arXiv paper.

The implementation code of mscnn crowd counting model, please click on github.

multi-scale block

mscnn_model

mscnn_architecture

result_display

result_table

Contents

  1. Installation
  2. Preparation
  3. Train/Eval
  4. Details

Installation

  1. Configuration requirements
python3.x

Please using GPU, suggestion more than GTX960

python-opencv
#tensorflow-gpu==1.0.0
#tensorflow==1.0.0
matplotlib==2.2.2
numpy==1.14.2

conda install -c https://conda.binstar.org/menpo opencv3
pip install -r requirements.txt
2. Get the code
git clone https://github.com/Ling-Bao/mscnn
cd mscnn
### Preparation 1. ShanghaiTech Dataset. ShanghaiTech Dataset makes by Zhang Y, Zhou D, Chen S, et al. For more detail, please refer to paper “Single-Image Crowd Counting via Multi-Column Convolutional Neural Network” and click on [here](https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhang_Single-Image_Crowd_Counting_CVPR_2016_paper.pdf). 2. Get dataset and its corresponding map label [Baidu Yun](https://pan.baidu.com/s/12EqB1XDyFBB0kyinMA7Pqw) Password: sags 3. Unzip dataset to mscnn root directory
 tar -xzvf  Data_original.tar.gz
### Train/Eval Train is easy, just using following step. 1. Train. Using [mscnn_train.py](mscnn_train.py) to evalute mscnn model
python mscnn_train.py
2. Eval. Using [mscnn_eval.py](mscnn_eval.py) to evalute mscnn model
python mscnn_eval.py
### Details 1. Improving model structure. Add Batch Normal after each convolution layer. 2. Improving activation funtion for last layer to adapt crowd counting map estimation.

formulation

=======
License

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页