5款视觉OCR开源模型

一、号称「世界上最好的 OCR 模型」Mistral OCR

Mistral OCR 擅长理解复杂的文档元素,包括交错图像、数学表达式、表格和高级布局(如 LaTeX 格式)。该模型可以更深入地理解丰富的文档,尤其是包含图表、图形、公式和数字的科学论文。

支持英语、中文、日语等 100 多种语言,满足全球用户的需求。并且提供结构化的 JSON 输出,可轻松与你的系统集成。更多内容请查阅法国大模型独角兽Mistral发布全新OCR文档解析模型,复杂表格识别超96%!

Code:Mistral OCR - Intelligent Text Recognition & Extraction

二、号称「最好用最易用的OCR工具」Umi-OCR

Umi-OCR 是免费开源的离线 OCR 文字识别软件。无需联网,解压即用,支持截图、批量图片、PDF 扫描件的文字识别,能识别数学公式、二维码,可生成双层可搜索 PDF。

  • 免费:本项目所有代码开源,完全免费。
  • 方便:解压即用,离线运行,无需网络,适用于 Windows、Linux。
  • 高效:自带高效率的离线OCR引擎,内置多种语言识别库。
  • 灵活:支持命令行、HTTP接口等外部调用方式。

功能:截图OCR / 批量OCR / PDF识别 / 二维码 / 公式识别

Umi-OCR 可以将纸质文档、书籍、合同等转换为可编辑的电子文本,提高文档存储和检索的效率。也可用于自动提取发票、报表、证件等文档中的数据,减少人工输入错误提高工作效率。

Code:GitHub - hiroi-sora/Umi-OCR: OCR software, free and offline. 开源、免费的离线OCR软件。支持截屏/批量导入图片,PDF文档识别,排除水印/页眉页脚,扫描/生成二维码。内置多国语言库。

三、号称「专注于复杂布局PDF文档解析」olmOCR

olmOCR 通过 Qwen2-VL-7B-Instruct 进行训练,专门针对 PDF 和文档图像提取干净、结构化的纯文本,并以 Markdown 格式输出,极大地提升了文本解析的精准度、可读性和可用性。模型在 100,000 多个 PDF 中的 260,000 页样本上进行训练,训练样本包括图形、手写文本和质量较差的扫描文件。

本地部署要求配置是RTX 4090及以上显卡,显存要大于20GB。更多内容请查阅手写笔记、复杂表格、学术公式不再识别错误?数据、模型及代码均开源

Code:GitHub - allenai/olmocr: Toolkit for linearizing PDFs for LLM datasets/training

四、号称「全能多模态解析王」GOT-OCR 2.0

来自清华和旷视的研究团队提出了一个通用的OCR-2.0模型,模型能够处理各种OCR任务中的上述所有类型的“字符”,是一个统一且优雅的端到端模型,包含高压缩编码器和长上下文解码器。能处理数学公式、分子式、图表、乐谱、几何图形等多种内容,并且模型大小仅1.43GB适合本地轻量化部署。

更多内容请查阅通过统一的端到端模型,实现文本、数学公式、表格、图表及乐谱等内容的精确处理,同时支持场景和文档风格等

Code:GitHub - Ucas-HaoranWei/GOT-OCR2.0: Official code implementation of General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model

五、号称「擅长表格识别」Surya OCR

Surya:多语言文档OCR工具包,可进行准确的文本行检测,即将推出文本识别功能,以及表格和图表检测功能,可以处理各种类型的文档和多种语言。其中主要针对表格识别进行优化:能精准识别表格的行、列、单元格结构,包括旋转或复杂布局的表格,性能优于当前主流开源模型。

Code:GitHub - VikParuchuri/surya: OCR, layout analysis, reading order, table recognition in 90+ languages

参考链接:

视觉领域OCR难题不再?5款开源模型精准解析数字、文本、表格及公式等内容!教育/金融/医疗场景全覆盖!

### 光学字符识别 (OCR) 模型使用教程与最佳实践 #### 一、理解 OCR 技术原理 光学字符识别(OCR)技术涉及将图像形式的文字转换为机器编码文本。这一过程通常包括以下几个阶段:预处理、分割、特征提取以及分类[^1]。 #### 二、准备环境 对于想要快速上手并测试 OCR 功能的人来说,可以考虑使用现成的工具库如 Tesseract 或 EasyOCR 来简化开发流程。如果倾向于从头构建,则可能需要用到 TensorFlow 等框架支持下的自定义神经网络训练方案[^3]。 #### 三、数据收集与标注 为了获得良好的识别效果,在实际应用前需准备好足够的样本图片用于训练模型。这些图片应该覆盖目标场景下可能出现的各种字体样式、大小变化等因素,并对其进行精确标记以便后续监督式学习之用。 #### 四、图像预处理 原始获取到的照片往往存在噪声干扰等问题影响最终结果准确性,所以要先经过灰度化、去噪、边缘增强等一系列操作改善输入质量。这一步骤能够显著提升下游任务的表现水平[^2]。 ```python import cv2 from PIL import ImageEnhance, ImageFilter def preprocess_image(image_path): img = cv2.imread(image_path) # 转换为灰度图 gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 应用高斯模糊去除噪音 blurred_img = cv2.GaussianBlur(gray_img,(5,5),0) return blurred_img ``` #### 五、选择合适的算法/模型架构 目前主流的方法有两种——传统模板匹配法和基于深度学习的方法。前者依赖于预先设定好的字模数据库来进行对比查找;后者则借助卷积神经网络自动抽取有效表征完成预测工作。鉴于后者具有更强泛化能力和适应范围更广的优势,推荐优先尝试此类解决方案。 #### 六、评估优化 在完成了初步搭建之后,还需要不断调整参数设置并通过交叉验证等方式检验改进措施的有效性直至达到满意的性能标准为止。常见的评价指标有拒识率、误识率等。 #### 七、部署上线 最后当一切就绪后就可以把整个系统迁移到生产环境中去了。考虑到实时响应需求较高的情况建议采用云端服务API接口调用来分担计算压力同时保证用户体验流畅度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值