第十三讲 二阶非齐次常系数线性ODE的特解

本文详细探讨了二阶非齐次常系数线性微分方程(ODE)的特解求解方法,包括标准形式、通解、指数输入定理和代换法则等。通过具体例题展示了如何处理含有纯振荡输入项的方程,以及当特征方程有单根、二重根或n重根时如何求特解。
摘要由CSDN通过智能技术生成

一,二阶非齐次常系数线性ODE的标准形式:

  • {y}''+A{y}'+By=f(x)

二,通解:

  •  y=y_{p}+{\color{Magenta} c_{1}y_{1}+c_{2}y_{2}}

三,将方程化成特殊形式:

  • 设方程右边的输入项为“纯振荡”:f(x)=e^{​{\color{Red} \alpha }x}=e^{(a+i\omega ) x}=e^{ax}(cos(\omega x)+isin(\omega x))a< 0{\color{Red} \alpha}表示复数
  • 方程左边换成线性算子式:{y}''+A{y}'+By=(D^{2}+AD+B)y=p(D)y
  • {\color{Red} (D^{2}+AD+B)y=e^{\alpha x}}

四,代换法则:

  • {\color{Red} p(D)e^{\alpha x}=p(\alpha )e^{\alpha x}}
  • 证明:p(D)e^{\alpha x}=(D^{2}+AD+B)e^{\alpha x}=D^{2}e^{\alpha x}+ADe^{\alpha x}+Be^{\alpha x}
  • \becauseD表示对函数求导:D^{2}e^{\alpha x}=\alpha ^{2}e^{\alpha x}De^{\alpha x}=\alpha e^{\alpha x}
  • \thereforeD^{2}e^{\alpha x}+ADe^{\alpha x}+Be^{\alpha x}=\alpha ^{2}e^{\alpha x}+A\alpha e^{\alpha x}+Be^{\alpha x}=p(\alpha )e^{\alpha x}

五,指数输入定理(当p(\alpha )\neq 0时):

  • (D^{2}+AD+B)y=e^{\alpha x}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值