双线性正切制导律 (Bi-linear tangent law)

双线性正切制导率

鲁鹏,北京理工大学宇航学院

之前看迭代制导的文章 [1] 时里面提到了双线性正切制导率,很多关于火箭轨迹优化的文章也提到过如较新的文献 [2] 。本文总结双线性正切制导率 (Bi-linear tangent law) 的推导过程 ,分别使用变分法 (calculus of variations) 和最小值原理的基础知识进行推导,主要参考了文献 [3] 的57到58页和文献 [4] 的59页到61页。

一、使用变分法推导

在假设地球重力场为平行力场,重力加速度、推力大小和比冲都为常值条件下,研究最优俯仰角程序。

在这里插入图片描述
俯仰平面中的纵向运动方程
x ˙ = v x y ˙ = v y v ˙ x = P m cos ⁡ φ v ˙ y = P m sin ⁡ φ − g \dot{x} = v_{x}\\ \dot{y} = v_{y} \\ \dot{v}_{x} = \frac{P}{m}\cos\varphi \\ \dot{v}_{y} = \frac{P}{m}\sin\varphi - g x˙=vxy˙=vyv˙x=mPcosφv˙y=mPsinφg

在终点关机时刻 t k t_{k} tk 时,导弹的速度和位置可以表示为
{ v x k = v x 0 + ∫ 0 t k P m ( t ) cos ⁡ φ ( t ) d t v y k = v y 0 + ∫ 0 t k ( P m ( t ) sin ⁡ φ ( t ) − g ) d t x k = x 0 + v x 0 t k + ∫ 0 t k ∫ 0 τ P m ( t ) cos ⁡ φ ( t ) d t d τ = x 0 + v x 0 t k + [ τ ∫ 0 τ P m ( t ) cos ⁡ φ ( t ) d t − ∫ 0 τ t P m ( t ) cos ⁡ φ ( t ) d t ] τ = t k = x 0 + v x 0 t k + ∫ 0 t k ( t k − t ) P m ( t ) cos ⁡ φ ( t ) d t y k = y 0 + v y 0 t k + ∫ 0 t k ( t k − t ) ( P m ( t ) sin ⁡ φ ( t ) − g ) d t \left\{\begin{aligned} v_{xk}=&v_{x0}+\int_{0}^{t_{k}} \frac{P}{m(t)} \cos \varphi(t) \mathrm{d}t \\ v_{yk}=&v_{y0}+\int_{0}^{t_{k}}\left(\frac{P}{m(t)} \sin \varphi(t)-\mathrm{g}\right) \mathrm{d}t \\ x_{k} =& x_{0}+v_{x0}t_{k}+\int_{0}^{t_{k}}\int_{0}^{\tau}\frac{P}{m(t)} \cos \varphi(t) \mathrm{d}t\mathrm{d}\tau \\ =& x_{0}+v_{x0}t_{k}+ \left[ \tau\int_{0}^{\tau}\frac{P}{m(t)} \cos \varphi(t) \mathrm{d}t - \int_{0}^{\tau}t\frac{P}{m(t)} \cos \varphi(t)\mathrm{d}t \right]_{\tau = t_{k}} \\ =& x_{0}+v_{x0}t_{k}+\int_{0}^{t_{k}}\left(t_{k}-t\right) \frac{P}{m(t)} \cos \varphi(t) \mathrm{d}t \\ y_{k}=&y_{0}+v_{y0} t_{k}+\int_{0}^{t_{k}}\left(t_{k}-t\right)\left(\frac{P}{m(t)} \sin \varphi(t)-g\right) \mathrm{d}t \end{aligned}\right. vxk=vyk=xk===yk=vx0+0tkm(t)Pcosφ(t)dtvy0+0tk(m(t)Psinφ(t)g)dtx0+vx0tk+0tk0τm(t)Pcosφ(t)dtdτx0+vx0tk+[τ0τm(t)Pcosφ(t)dt0τtm(t)Pcosφ(t)dt]τ=tkx0+vx0tk+0tk(tkt)m(t)Pcosφ(t)dty0+vy0tk+0tk(tkt)(m(t)Psinφ(t)g)dt
φ ( t ) \varphi(t) φ(t)的变分为 δ φ ( t ) \delta\varphi(t) δφ(t),则对应导弹关机时刻速度泛函和位置泛函的变分为
{ δ v x k = − ∫ 0 t k P m sin ⁡ φ ( t ) δ φ ( t ) d t δ v y k = ∫ 0 t k P m cos ⁡ φ ( t ) δ φ ( t ) d t δ x k = − ∫ 0 t k ( t k − t ) P m sin ⁡ φ ( t ) δ φ ( t ) d t δ y k = ∫ 0 t k ( t k − t ) P m cos ⁡ φ ( t ) δ φ ( t ) d t \left\{\begin{aligned} \delta v_{xk}=&-\int_{0}^{t_{k}} \frac{P}{m} \sin \varphi(t) \delta \varphi(t) \mathrm{d}t \\ \delta v_{yk}=&\int_{0}^{t_{k}} \frac{P}{m} \cos \varphi(t) \delta \varphi(t) \mathrm{d}t \\ \delta x_{k}=&-\int_{0}^{t_{k}}\left(t_{k}-t\right) \frac{P}{m} \sin \varphi(t) \delta \varphi(t) \mathrm{d}t \\ \delta y_{k}=&\int_{0}^{t_{k}}\left(t_{k}-t\right) \frac{P}{m} \cos \varphi(t) \delta \varphi(t) \mathrm{d}t \end{aligned}\right. δvxk=δvyk=δxk=δyk=0tkmPsinφ(t)δφ(t)dt0tkmPcosφ(t)δφ(t)dt0tk(tkt)mPsinφ(t)δφ(t)dt0tk(tkt)mPcosφ(t)δφ(t)dt
则射程 L ( x k , y k , v x k , v y k ) L(x_{k},y_{k},v_{xk},v_{yk}) L(xk,yk,vxk,vyk) 的变分为
δ L = ∂ L ∂ v x k δ v x k + ∂ L ∂ v y k δ v y k + ∂ L ∂ x k δ x k + ∂ L ∂ y k δ y k = − ∂ L ∂ v x k ∫ 0 t k P m sin ⁡ φ ( t ) δ φ ( t ) d t + ∂ L ∂ v y k ∫ 0 t k P m cos ⁡ φ ( t ) δ φ ( t ) d t − ∂ L ∂ x k ∫ 0 t k ( t k − t ) P m sin ⁡ φ ( t ) δ φ ( t ) d t + ∂ L ∂ y k ∫ 0 t k ( t k − t ) P m cos ⁡ φ ( t ) δ φ ( t ) d t = ∫ 0 t k [ − ∂ L ∂ v x k P m sin ⁡ φ ( t ) + ∂ L ∂ v y k P m cos ⁡ φ ( t ) − ∂ L ∂ x k ( t k − t ) P m sin ⁡ φ ( t ) + ∂ L ∂ y k ( t k − t ) P m cos ⁡ φ ( t ) ] δ φ ( t ) d t \begin{aligned} \delta L=& \frac{\partial L}{\partial v_{xk}}\delta v_{xk} + \frac{\partial L}{\partial v_{yk}}\delta v_{yk} + \frac{\partial L}{\partial x_{k}}\delta x_{k} + \frac{\partial L}{\partial y_{k}}\delta y_{k}\\ =& -\frac{\partial L}{\partial v_{xk}} \int_{0}^{t_{k}}\frac{P}{m} \sin \varphi(t) \delta \varphi(t) \mathrm{d}t + \frac{\partial L}{\partial v_{yk}} \int_{0}^{t_{k}}\frac{P}{m} \cos \varphi(t)\delta \varphi(t) \mathrm{d}t \\ & -\frac{\partial L}{\partial x_{k}} \int_{0}^{t_{k}}\left(t_{k}-t\right)\frac{P}{m} \sin \varphi(t)\delta \varphi(t) \mathrm{d}t + \frac{\partial L}{\partial y_{k}} \int_{0}^{t_{k}} \left(t_{k}-t\right)\frac{P}{m} \cos \varphi(t) \delta \varphi(t) \mathrm{d}t \\ =& \int_{0}^{t_{k}}\left[-\frac{\partial L}{\partial v_{xk}} \frac{P}{m} \sin \varphi(t)+\frac{\partial L}{\partial v_{yk}} \frac{P}{m} \cos \varphi(t) \right.\\ & \left.-\frac{\partial L}{\partial x_{k}} \left(t_{k}-t\right)\frac{P}{m} \sin \varphi(t)+\frac{\partial L}{\partial y_{k}} \left(t_{k}-t\right)\frac{P}{m} \cos \varphi(t)\right] \delta \varphi(t) \mathrm{d}t \end{aligned} δL===vxkLδvxk+vykLδvyk+xkLδxk+ykLδykvxkL0tkmPsinφ(t)δφ(t)dt+vykL0tkmPcosφ(t)δφ(t)dtxkL0tk(tkt)mPsinφ(t)δφ(t)dt+ykL0tk(tkt)mPcosφ(t)δφ(t)dt0tk[vxkLmPsinφ(t)+vykLmPcosφ(t)xkL(tkt)mPsinφ(t)+ykL(tkt)mPcosφ(t)]δφ(t)dt
射程达到极值的必要条件是变分 δ L = 0 \delta L=0 δL=0 ,即
− [ ∂ L ∂ x k ( t k − t ) + ∂ L ∂ v x k ] sin ⁡ φ ( t ) + [ ∂ L ∂ y k ( t k − t ) + ∂ L ∂ v y k ] cos ⁡ φ ( t ) = 0 -\left[\frac{\partial L}{\partial x_{k}}\left(t_{k}-t\right)+\frac{\partial L}{\partial v_{xk}}\right] \sin \varphi(t) +\left[\frac{\partial L}{\partial y_{k}}\left(t_{k}-t\right)+\frac{\partial L}{\partial v_{yk}}\right] \cos \varphi(\mathrm{t})=0 [xkL(tkt)+vxkL]sinφ(t)+[ykL(tkt)+vykL]cosφ(t)=0
故最优俯仰角程序为
φ ( t ) = arctan ⁡ ∂ L ∂ y k ( t k − t ) + ∂ L ∂ V y k ∂ L ∂ x k ( t k − t ) + ∂ L ∂ V x k \varphi(t)=\arctan \frac{\frac{\partial L}{\partial y_{k}}\left(t_{k}-t\right)+\frac{\partial L}{\partial V_{yk}} }{ \frac{\partial L}{\partial x_{k}}\left(t_{k}-t\right)+\frac{\partial L}{\partial V_{xk}}} φ(t)=arctanxkL(tkt)+VxkLykL(tkt)+VykL
∂ L ∂ v x k ≠ 0 \frac{\partial L}{\partial v_{xk}} \neq 0 vxkL=0,上式可写成
φ ( t ) = arctan ⁡ A + B t 1 + C t \varphi(t)=\arctan \frac{A+B t}{1+C t} φ(t)=arctan1+CtA+Bt
A、B、C是待定常数,由于控制角 φ \varphi φ的正切是两个线性函数的比值,这种制导率就叫做双线性正切制导率。在工程设计中可以直接选择系数 A、B、C 使目标优化。对上式进行一阶泰勒展开可得到俯仰角程序 φ p r ( t ) \varphi_{pr}(t) φpr(t) 按时间的线性关系表达为 φ p r ( t ) = A + B t \varphi_{pr}(t) = A+Bt φpr(t)=A+Bt 。工程设计中也可以使用这种简化形式,直接选择系数 A、B使目标优化。

二、使用最小值原理推导

向直线路径的最大速度转移问题(maximum velocity transfer to a rectilinear path):质量为 m m m的质点上作用着一个大小为 m a ma ma的推力。这里只考虑平面问题,质点在惯性坐标系中的坐标是 x , y x,y x,y,速度分量表示为 u , v u,v u,v,推力的方向用角度 β ( t ) \beta(t) β(t)表示,推力方向是问题中唯一的控制变量

在这里插入图片描述
质点的运动方程
u ˙ = a cos ⁡ β v ˙ = a sin ⁡ β x ˙ = u y ˙ = v \dot{u} = a\cos\beta \\ \dot{v} = a\sin\beta \\ \dot{x} = u \\ \dot{y} = v u˙=acosβv˙=asinβx˙=uy˙=v

其中 a a a 是时间的已知函数。该问题的哈密度函数
H = λ u a cos ⁡ β + λ v a sin ⁡ β + λ x u + λ y v H = \lambda_{u}a\cos\beta + \lambda_{v}a\sin\beta + \lambda_{x}u + \lambda_{y}v H=λuacosβ+λvasinβ+λxu+λyv
协态方程 (costate equation, adjoint equation)
λ u ˙ = ∂ H ∂ u = − λ x , λ v ˙ = − λ y , λ x ˙ = 0 , λ y ˙ = 0 \dot{\lambda_{u}} =\frac{\partial H}{\partial u}= -\lambda_{x},\dot{\lambda_{v}} = -\lambda_{y},\dot{\lambda_{x}} = 0,\dot{\lambda_{y}} = 0 λu˙=uH=λx,λv˙=λy,λx˙=0,λy˙=0
对上面的微分方程积分可得
λ u = − c 1 t + c 3 , λ v = − c 2 t + c 4 , λ x = c 1 , λ y = c 2 \lambda_{u}=-c_{1}t+c_{3}, \lambda_{v}=-c_{2}t+c_{4}, \lambda_{x}=c_{1}, \lambda_{y}=c_{2} λu=c1t+c3,λv=c2t+c4,λx=c1,λy=c2
其中 c 1 , c 2 , c 3 , c 4 c_{1},c_{2},c_{3},c_{4} c1,c2,c3,c4都是常数。

根据最优性条件可知
∂ H ∂ β = − λ u a sin ⁡ β + λ v a cos ⁡ β = 0 \frac{\partial H}{\partial \beta} = -\lambda_{u}a\sin\beta + \lambda_{v}a\cos\beta = 0 βH=λuasinβ+λvacosβ=0
因此最优控制率如下
tan ⁡ β = λ v λ u = − c 2 t + c 4 − c 1 t + c 3 \tan\beta = \frac{\lambda_{v}}{\lambda_{u}} = \frac{-c_{2}t+c_{4}}{-c_{1}t+c_{3}} tanβ=λuλv=c1t+c3c2t+c4
这个就是双线性正切制导率的公式。

现在考虑另一个例子,把这个质点在给定时间 T T T内转移到平行于 x x x轴并且距离 x x x h h h远的路径上,使末端速度水平速度 u ( T ) u(T) u(T)尽可能大,而不对终端 x x x进行限制。

在这里插入图片描述
此时这个问题的边界条件如下
u ( 0 ) = 0 λ u ( T ) = 1 v ( 0 ) = 0 v ( T ) = 0 , λ v ( T ) = ν v x ( 0 ) = 0 λ x ( T ) = 0 y ( 0 ) = 0 y ( T ) = h , λ y ( T ) = ν y \begin{aligned} u(0) = 0 & & \lambda_{u}(T)=1 \\ v(0) = 0 & & v(T) = 0,\lambda_{v}(T)=\nu_{v} \\ x(0) = 0 & & \lambda_{x}(T) = 0 \\ y(0) = 0 & & y(T) = h,\lambda_{y}(T) = \nu_{y} \end{aligned} u(0)=0v(0)=0x(0)=0y(0)=0λu(T)=1v(T)=0,λv(T)=νvλx(T)=0y(T)=h,λy(T)=νy
其中 ν v , ν y \nu_{v},\nu_{y} νv,νy 是待确定的拉格朗日乘子。

使用上一部分双线性正切制导率推导过程中的信息可得 λ x = 0 \lambda_{x}=0 λx=0,进而 λ u = 1 \lambda_{u}=1 λu=1。此时最优控制率变成了线性正切制导率
tan ⁡ β = tan ⁡ β 0 − c t ,  where  tan ⁡ β = ν v + ν y T , c = ν y \tan\beta = \tan\beta_{0} - ct, \text{ where }\tan\beta=\nu_{v}+\nu_{y}T,c=\nu_{y} tanβ=tanβ0ct, where tanβ=νv+νyT,c=νy

参考:

[1] Chandler D C , Smith I E . Development of the iterative guidance mode with its application to various vehicles and missions.[J]. Journal of Spacecraft & Rockets, 1967, 4(7):898-903.
[2] Federici L , Zavoli A , Colasurdo G , et al. Integrated Optimization of First-Stage SRM and Ascent Trajectory of Multistage Launch Vehicles[J]. Journal of Spacecraft and Rockets, 2021(4):1-12.
[3] 祝强军.弹道导弹弹道仿真与优化设计[D].陕西:西北工业大学,2007,57-58. DOI:10.7666/d.y1033176.
[4] A.E. Bryson, Jr., and Y.-C. Ho. Applied Optimal Control, 2nd edition (revised). Hemisphere Publishing Corp., Washington D.C., 1975
[5] Perkins F M . DERIVATION OF LINEAR-TANGENT STEERING LAWS. 1966.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

oPengLuo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值