#每天一篇论文# 221/365 单目SLAM半稠密3D语义地图

Semi-Dense 3D Semantic Mapping from Monocular SLAM

本文要点是将2D语义分割结果通过概率模型,推导到3D地图中,重建了具有语义信息的3D地图

摘要

计算机视觉中的几何和外观组合已被证明是机器人在各种应用中的一个有前途的解决方案。立体摄像机和rgbd传感器广泛应用于实现快速三维重建和密集的轨迹跟踪。然而,它们缺乏在不同缩放环境(即室内和室外场景)之间无缝切换的灵活性。此外,在三维映射中,语义信息仍然很难获取。我们通过结合最先进的深度学习方法和基于单目摄像机视频流的半密集同步定位与映射(slam)来应对这一挑战。 该方法通过具有空间一致性的连接关键帧之间的对应关系,将二维语义信息转化为三维映射。无需对序列中的每一帧进行语义分割,从而达到合理的计算时间。我们在室内/室外数据集上对我们的方法进行了评估,并在基线单帧预测的基础上改进了二维语义标记。

贡献

我们的方法是使用最新的深度cnn组件来预测语义信息,这些语义信息将从实时单目slam系统投影到全局一致的3d地图上。三维地图是由一系列选定的帧以计算出的深度信息作为跟踪参考逐步构建的。这允许二维CNN的语义标签附加到关键帧,关键帧可以以半密集的方式融合到三维地图中,如图1所示。无需对每一帧进行序列分割,节省了大量的计算量。由于三维地图应具有全局一致的深度信息,因此将根据其几何结构对其进行正则化。2d-3d转换后的正则化过程旨在去除显著的异常点,使3d地图中的成分更加一致,即具有语义标签的局部点应该在空间上接近。我们选择nyuv2和camvid/kitti数据集来评估我们的方法,并且我们见证了2d语义分割的改进。利用未标记的原始视频,实时(≈10hz)重建具有语义预测的3d地图。
在这里插入图片描述

方法

三维重建过程从单目相机拍摄的图像帧序列中选择关键帧。所选关键帧将堆叠起来,以基于其姿势图重建三维贴图。整个过程在cpu内实时运行。同时,二维语义分割过程预测了关键帧的像素级分类。关键帧的深度信息由其连续帧迭代地细化。它为每个关键帧创建局部最优深度估计,并在三维点云中创建标记像素和体素之间的对应关系。为了获得全局最优的三维语义分割,我们利用相邻三维点的信息,包括距离、颜色相似度和语义标签。该过程实现了三维点状态的更新,生成了全局一致的三维地图。以下部分将更详细地描述每个过程。

在这里插入图片描述
2D到3D的概率模型
在这里插入图片描述

实验

在这里插入图片描述

<think>好的,用户想了解如何使用VLM(视觉语言模型)构建二维地图。我需要结合提供的引用内容来回答这个问题。首先,我得明确VLM在这里的作用,以及如何利用其处理视觉和语言信息的能力来辅助地图构建。 根据引用[2],VLM可以处理视觉和语言输入,比如CLIP模型将图像和文本映射到共享潜在空间。这可能意味着VLM可以用于图像的特征提取,帮助识别环境中的关键元素。引用[1]提到使用VLM的注意力图来突出显示导航的关键区域,这可能对地图构建中的特征提取有帮助,比如识别道路、障碍物等。 接下来,引用[3]和[4]讨论了在自动驾驶场景中使用VLM进行场景理解和生成适应不同天气的图像。这可能涉及到使用VLM分析前方图像,提取语义信息,比如车道线、交通标志等,这些信息可以转化为二维地图的元素。 用户的问题是如何构建二维地图,可能需要将VLM处理的视觉信息转换为二维坐标。可能的步骤包括:图像采集、特征提取(使用VLM的注意力机制或图像编码器)、语义信息标注、坐标映射,最后整合成地图。 需要注意的是,VLM本身可能不直接生成地图,而是提供高层次的语义信息,需要与其他技术(如SLAM)结合。比如,VLM识别物体和场景,而SLAM处理空间定位和地图构建。引用[1]中的注意力图可能用于增强关键区域的识别,提高地图的准确性。 此外,引用[4]提到使用扩散模型生成驾驶场景图像,这可能用于数据增强,帮助VLM在训练时更好地适应不同环境,从而提升地图构建的鲁棒性。 总结步骤:使用VLM处理图像输入,提取特征和语义信息,结合定位技术将信息映射到二维坐标系,最后整合生成地图。需要验证在模拟环境和真实场景中的效果,如引用[3]所述。</think>### 如何使用 VLM 构建二维地图 使用视觉语言模型(VLM)构建二维地图的核心思路是通过其多模态理解能力,将视觉感知与语义信息结合,生成具有环境特征和语义标注的二维空间表示。以下是具体实现步骤: --- #### 1. **视觉信息提取与特征对齐** - **图像编码器应用**:使用 VLM 的图像编码器(如 CLIP 的 $CLIP_I$)处理输入的视觉数据(例如摄像头捕获的驾驶场景图像),提取高维特征向量[^2]。 - **注意力图蒸馏**:通过提取 VLM 中间层的注意力图(如引用[1]中的方法),识别图像中的关键区域(如道路边界、障碍物、交通标志),并通过结构相似性指数损失(SSIL)对齐导航相关的感知特征。 ```python # 示例:使用 CLIP 提取图像特征 import clip model, preprocess = clip.load("ViT-B/32") image_features = model.encode_image(preprocess(image)) ``` --- #### 2. **语义标注与空间映射** - **语言-视觉关联**:将 VLM 的文本编码器(如 $CLIP_L$)生成的语义标签(例如“十字路口”“人行道”)与图像特征关联,形成语义-空间对应关系[^2]。 - **坐标转换**:结合传感器数据(如激光雷达或深度相机)或单目深度估计,将图像中的像素坐标转换为二维平面坐标,生成初步的栅格地图。 --- #### 3. **动态场景建模与数据增强** - **多天气泛化**:利用 WeatherDG 等方法生成不同天气条件下的场景图像(引用[4]),提升 VLM 对复杂环境的适应能力。 - **行为指令融合**:在自动驾驶场景中,将 VLM 输出的行为指令(如“左转”“避让行人”)与二维地图的动态更新结合(引用[3])。 --- #### 4. **地图优化与验证** - **注意力引导优化**:通过 VLM 的注意力图修正地图中的模糊区域(例如阴影遮挡部分),增强地图的可靠性[^1]。 - **仿真与真实测试**:在 CARLA 仿真环境中验证地图的拓扑结构(引用[3]),并在真实数据集(如 HawkDrive)中测试泛化性。 --- #### 关键技术挑战 - **特征对齐精度**:需解决视觉特征与二维坐标的尺度、旋转不变性问题。 - **实时性要求**:VLM 的计算开销可能限制地图更新频率,需通过模型蒸馏或轻量化改进。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值