IMU状态预积分零偏的更新

本文介绍了在实际图优化中处理IMU零偏变化时,如何通过假设预积分观测随零偏线性变化并修正观测值。文章详细推导了旋转、速度和平移部分的雅可比矩阵,以便于计算和状态更新。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

IMU状态预积分零偏的更新

先前的讨论都假设了在i时刻的IMU零偏恒定不变,当然这都是为了方便后续计算。

然而在实际的图优化中,经常会对状态变量(优化变量)进行更新。那么理论上,如果IMU零偏发生了变化,预积分就应该重新计算,因为预积分的每一步都用到了i时刻的IMU零偏。

但在实际的操作过程中,也可以选用另一种做法:假定预积分观测是随零偏线性变化的,然后在原先的观测量上进行修正。
具体来说,把预积分观测看成 b g , i , b a , i b_{g,i},b_{a,i} bg,i,ba,i的函数,那么当 b g , i , b a , i b_{g,i},b_{a,i} bg,i,ba,i更新了 δ b g , i , δ b a , i \delta b_{g,i},\delta b_{a,i} δbg,i,δba,i之后,预积分观测应该做如下修正:
在这里插入图片描述
于是,问题就变成如何计算上面列写的几个偏导数(雅可比矩阵)。

下面推导这几个雅可比矩阵。核心思想就是将噪声变量移出来求线性化

旋转部分

预积分旋转观测量可以写为:
在这里插入图片描述
在这里插入图片描述
最后一行用到了BCH在 δ b g , i \delta b_{g,i} δbg,i为小量时雅克比矩阵接近单位阵的性质。
通过这种方式可以算出 △ R ~ i j \bigtriangleup \tilde{R} _{ij} R~ij相对于 δ b g , i \delta b_{g,i} δbg,i的雅克比矩阵,记作
∂ △ R ~ i j ∂ b g , i \frac{\partial \bigtriangleup \tilde{R} _{ij}}{\partial b_{g,i}} bg,iR~ij

那么根据上式,可以显式地写出
在这里插入图片描述
为了方便计算,写出递推的形式
在这里插入图片描述
于是得到了如何将这个雅克比矩阵从j-1时刻递推到j时刻。

速度部分

在这里插入图片描述

可见,速度相对于零偏的导数可以部分地由旋转导数的结果计算出来。

平移部分

在这里插入图片描述
这样就算出了平移对两个零偏变量的雅克比矩阵。

总结

整理上面的雅克比矩阵,得到更整齐的结果
在这里插入图片描述
由于后面四种雅克比矩阵本身就是累加的,总结成递推形式
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

月照银海似蛟龙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值