近期RAG这块比较火热的方向当属GraphRAG,微软GraphRAG项目自2024.7.3日开源以来,两周内,收获10.9k星星,可见其火热,同时,它既不是第一个也不会是最后一个开源的GrapRAG项目:
- 2024.3.15日LangChain发布Graph RAG实战教程
- 2024.6.24日 蚂蚁首个开源Graph RAG框架
蚂蚁首个对外开源的Graph RAG框架采用全自主的开源产品:DB-GPT(RAG的AI工程框架)+ OpenSPG(知识图谱系统)+ TuGraph(图存储系统)。
Vector | Graph:蚂蚁首个开源Graph RAG框架设计解读
- 2024.7.9日 LlamaIndex发文介绍了Property Graphs,属性图索引通过使用标签属性图表示,解决了传统知识图谱无法为节点和关系分配标签和属性,无法将文本节点表示为向量嵌入,无法进行向量和符号检索的问题,提供了更丰富的建模、存储和查询能力。
RAG+Graph新的打开方式:Property Graphs
- 2024.7.11日Neo4j CEO发表GraphRAG长篇科普长文: GraphRAG宣言。
随后Neo4j于13日开源了 基于LLM提取知识图谱的生成器:llm-graph-builder
github:GitHub - neo4j-labs/llm-graph-builder: Neo4j graph construction from unstructured data using LLMs
- 2024.7.14日 开源项目Camel宣布在其框架中引入Graph RAG Agent!目前并开源了知识图谱抽取的 Prompt,组合使用UnstructuredIO和neo4j实现节点和关系抽取。
教程:https://colab.research.google.com/drive/1IyttIWlsJKGWtWpc-QXDGbVok8fbud\_j
- 2024.7.14日 LlamaIndex中初步实现了微软GraphRAG的一些模块:图形生成,构建图形和社区摘要;基于社区的检索,使用社区摘要并汇总中间答案。