Games201学习笔记5:线性弹性有限元

这篇博客详细介绍了有限元方法(FEM)在解决2维泊松方程中的应用,包括将连续偏微分方程转化为线性系统的过程。内容涵盖从弱型PDEs的建立、离散化到线性系统的求解,以及Dirichlet和Neumann边界条件的处理。此外,还提到了线性弹性力学FEM的柯西动量方程在准静态过程中的应用,并简要介绍了拓扑优化的概念。
摘要由CSDN通过智能技术生成

学习教程来自:GAMES201:高级物理引擎实战指南2020
以下大部分图片来自教程PPT,仅作为笔记用于学习和分享,侵删


笔记内容大多为课程内容的翻译和转述,外加一些自己的理解,若有不正确的地方恳请大家交流和指正

上一讲难产了,不知道能不能补过来了,先学这一讲吧hh

笔记

这节本质上是使用有限元的方法,最终得到一个线性系统用于求解。

1. FEM(Finite element method)

Galerkin methods(加辽金方法)的一种,FEM将continuous PDEs转化为线性系统,用于后续求解
步骤:

  1. 将强型PDEs转化为弱型PDEs
  2. 分步积分
  3. 散度定理进一步简化偏微分方程并得到诺依曼(Neumann)边界条件的显式形式
  4. 离散化
  5. 求解线性系统

2D Poisson’s equation 2维泊松方程:拉普拉斯方程是泊松方程的简化形式(来自知乎知乎用户Csa5DY),所以简单理解的话这里说的方程严格来说是拉普拉斯方程,但也算是泊松方程

Dirichlet boundary:狄利克雷边界条件/第一类边界条件,直接给定u在边界上的值

Neumann boundary:诺依曼边界条件/第二类边界条件,为u在边界上导数/梯度的值乘以法线方向

2. 离散化求解泊松方程

2.1 化简

首先,用一个任意的二维标量函数w(x),与强型式∇·∇u相乘,可以得到

另外,用w直接与∇u相乘再求导,并展开(求导的展开)化简(∇·∇u=0)得到

2边同时积分可得下方右项,因此推导成立

散度定理(Divergence theorem):一个体积内对x散度的面积分 = 边界上的向量函数x和法向量点乘,绕边界的线积分
因此可推

2.2 离散

用线性的基函数ϕ模拟连续函数u(x),如下为二维

三维情况下,图片来源2D basis functions on a triangular mesh

带入2.1结尾方程,同时离散化函数w和函数u

抽出对uj求和的部分

引入矩阵形式:
K:“stiffness” matrix 刚度矩阵
u: degree of freedoms/solution vector 自由度/解向量
f: load vector

其中有

2.3 边界条件

将u替换为对应的边界条件规定的关系

3. Linear elasticity FEM 线性弹性有限元

柯西动量方程:速度求拉格朗日导数(即加速度) = 1/密度 乘以 柯西stress tensor的散度 + 体积力/重力加速度

准静态过程下:速度很小为0,重力为0

自由度 Degree of freedom:displacement u(新的位置减去旧的位置)

3.1 求解-FEM方法

Index notion:用 , 表示求导,αβγ对应xyz轴,则原方程变化为

其中求散度的部分乘以w

分步积分

约掉为0的部分

2边积分,并使用散度定理

离散化w和u

带入

求其中σ和u的关系(线性关系)

替换符号标记表示为

带入得到线性系统Ku = f

4. Topology optimization 拓扑优化

是一种根据给定的负载情况、约束条件和性能指标,在给定的设计区域内对材料分布进行优化的数学方法,是结构优化的一种。(来自知乎拓扑优化(Topology Optimization)浅谈

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值