PCL 点云Delaunay三角剖分

本文介绍了Delaunay三角剖分的基本原理,包括空圆特性和最大化最小角特性,并详细阐述了逐点插入法生成Delaunay三角网的步骤。通过代码实现和结果展示,探讨了如何在PCL中应用这一算法处理3D点云数据。
摘要由CSDN通过智能技术生成

一、算法原理

1、算法流程

  Delaunay三角剖分是连接计算机视觉与计算机图形学的桥梁,将三维空间内散乱点云连接成优化的空间三角网格,反映数据点与其邻近点间的拓扑连接关系,保持点云数据全局信息且建立局部关联性,建立起的三角网体现散乱数据集所代表的目标物体的拓扑结构。
  特性1 三角网是唯一的,在Delaunay三角网中任一三角形的外接圆范围内不存在其他点,空圆特性如图1(a)所示。
  特性2 在散点集形成的三角剖分中,Delaunay三角剖分所形成的三角形的最小角最大,交换两个相邻的三角形构成凸四边形的对角线后,两个内角的最小角不再增大,最大化最小角特性如图1(b)所示。
在这里插入图片描述

图1 特性示意图。(a)空圆特性;(b)最大化最小角特性 <
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值