CloudCompare——点云转换为数字高程模型(DEM)

1. 算法原理

   点云数据转换为数字高程模型(DEM)的核心原理是通过空间采样和插值技术,将三维点云投影到二维平面并赋予高程属性。其完整流程与关键技术如下:


  1. 点云预处理

    • 去噪滤波:剔除激光点云中的飞点(如鸟类、云层反射点)
    • 地面点分割:通过算法(如布料模拟滤波CSF)分离地面点与非地面点(建筑、植被)
    • 点云精简:对高密度点云进行抽稀(如体素格网下采样)
  2. 格网化处理

    • 建立二维网格:将区域划分为规则格网(Cell Size = 分辨率)
    • 高程映射:对每个网格单元内的点云进行高程赋值
      z c e l l = f ( { z i } i = 1 n ) z_{cell} = f(\{z_i\}_{i=1}^n) zcell=f({zi}i=1n)
      常用赋值方法:
      方法计算公式适用场景
      最小值法 min ⁡ ( { z i } ) \min(\{z_i\}) min({zi})生成地表模型(DSM)
      最大值法 max ⁡ ( { z i } ) \max(\{z_i\}) max({zi})树冠高度模型(CHM)
      最近点法 z nearest z_{\text{nearest}} znearest实时处理
      插值法-DEM生成核心方法
  3. 高程插值(关键步骤)
    针对空单元格或需平滑的情况:

    • 反距离权重(IDW)
      z 0 = ∑ i = 1 n z i d i p ∑ i = 1 n 1 d i p ( p = 2 ) z_0 = \frac{\sum_{i=1}^n \frac{z_i}{d_i^p}}{\sum_{i=1}^n \frac{1}{d_i^p}} \quad (p=2) z0=i=1ndip1i=1ndipzi(p=2)
      • d i d_i di:目标点到第 i i i样本的距离
    • 克里金法(Kriging):基于空间自相关性建模最优无偏估计
    • 移动最小二乘(MLS):对点云曲面进行局部拟合
  4. 后处理与输出

    • 空洞填补:对无数据区域进行插值(如三角网插值)
    • 平滑滤波:消除高程突变(如高斯滤波)
    • 格式转换:输出GeoTIFF/ASCII Grid等标准DEM格式

2. 软件实现

1、获取地面点
在这里插入图片描述

2、找到点云转DEM的功能
在这里插入图片描述
3、设置转换参数
在这里插入图片描述

3. 结果展示

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值