1. 算法原理
点云数据转换为数字高程模型(DEM)的核心原理是通过空间采样和插值技术,将三维点云投影到二维平面并赋予高程属性。其完整流程与关键技术如下:
-
点云预处理
- 去噪滤波:剔除激光点云中的飞点(如鸟类、云层反射点)
- 地面点分割:通过算法(如布料模拟滤波CSF)分离地面点与非地面点(建筑、植被)
- 点云精简:对高密度点云进行抽稀(如体素格网下采样)
-
格网化处理
- 建立二维网格:将区域划分为规则格网(Cell Size = 分辨率)
- 高程映射:对每个网格单元内的点云进行高程赋值
z c e l l = f ( { z i } i = 1 n ) z_{cell} = f(\{z_i\}_{i=1}^n) zcell=f({zi}i=1n)
常用赋值方法:方法 计算公式 适用场景 最小值法 min ( { z i } ) \min(\{z_i\}) min({zi}) 生成地表模型(DSM) 最大值法 max ( { z i } ) \max(\{z_i\}) max({zi}) 树冠高度模型(CHM) 最近点法 z nearest z_{\text{nearest}} znearest 实时处理 插值法 - DEM生成核心方法
-
高程插值(关键步骤)
针对空单元格或需平滑的情况:- 反距离权重(IDW):
z 0 = ∑ i = 1 n z i d i p ∑ i = 1 n 1 d i p ( p = 2 ) z_0 = \frac{\sum_{i=1}^n \frac{z_i}{d_i^p}}{\sum_{i=1}^n \frac{1}{d_i^p}} \quad (p=2) z0=∑i=1ndip1∑i=1ndipzi(p=2)- d i d_i di:目标点到第 i i i样本的距离
- 克里金法(Kriging):基于空间自相关性建模最优无偏估计
- 移动最小二乘(MLS):对点云曲面进行局部拟合
- 反距离权重(IDW):
-
后处理与输出
- 空洞填补:对无数据区域进行插值(如三角网插值)
- 平滑滤波:消除高程突变(如高斯滤波)
- 格式转换:输出GeoTIFF/ASCII Grid等标准DEM格式
2. 软件实现
1、获取地面点
2、找到点云转DEM的功能
3、设置转换参数