RGB-D数据集汇总(2025年05月更新....)

以下是一些主流、常用于学术研究和工业应用的 RGB-D 数据集,适合用于 SLAM、3D 重建、场景理解、目标识别等任务。


主流 RGB-D 数据集推荐

名称传感器分辨率/帧率应用方向下载地址 / 说明
TUM RGB-DKinect V1640×480 @ 30HzRGB-D SLAM, VIOTUM 官网
ICL-NUIM模拟深度相机640×480 @ 30Hz轨迹评估, 重建官网
NYU Depth V2Kinect V1640×480 @ 30Hz室内语义分割NYU 官网
SceneNNASUS Xtion多分辨率3D 场景重建SceneNN 官网
SUN3DKinect / Asus640×480 @ 30Hz3D 场景配准 / SfMSUN3D
RGB-D ScenesKinect640×480多物体识别下载
ScanNet实景数据 + IMU640×480 @ 30Hz室内语义建图、重建ScanNet
ETH3D高精度相机对深度精度高几何精度评估ETH3D
CoRBSKinect V2 / RealSense高分辨率高质量重建CoRBS 官网

各数据集内容典型结构(以 TUM 为例)

dataset/
 ├── rgb/
 │    ├── 1305031102.175304.png
 ├── depth/
 │    ├── 1305031102.181270.png
 ├── groundtruth.txt
 └── associations.txt
  • RGB 图像:彩色图像(PNG/JPG)
  • Depth 图像:每像素表示深度值(以毫米/米存储)
  • Groundtruth:轨迹 ground truth(常为 TUM 格式:时间戳+位姿)
  • Associations:RGB、深度、轨迹的时间戳对齐文件

应用匹配建议

任务类型推荐数据集
RGB-D SLAM / VIOTUM RGB-D, ICL-NUIM
室内语义分割NYU V2, ScanNet
高质量重建评估ETH3D, CoRBS, SceneNN
多物体识别RGB-D Scenes
配准 / 轨迹拟合SUN3D, TUM, ICL-NUIM

️ 使用工具建议

  • 加载 RGB-D 数据:

    • PCL 或Open3D
    • OpenCV
  • 数据集格式转换:

    • associate.py(TUM 官方提供)
    • 自写脚本进行 .txt → ROS Bag 转换
  • 可与 SLAM 系统集成:

    • ORB-SLAM2/3
    • DVO-SLAM
    • ElasticFusion
    • InfiniTAM
    • Open3D / PyTorch3D

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云SLAM

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值