曲柄机构正逆运动学

曲柄摇杆机构

在这里插入图片描述
参数定义
在这里插入图片描述

其中

曲柄臂 ab 的长度为 R,以固定角速度 ω 约为旋转点 a 的方向逆时针旋转。其位置由曲柄角 θ 确定。

滑针连接点 c 被限制沿水平轴移动 x: 当曲柄角 θ = 0时 x = 0

Φ 是连杆 bc 和 x 轴之间的夹角,这个是未知的

点 d 是点 b 在垂直于 x 轴的交流直线上的投影。

滑块的行程x计算(正解)

w: 求出x关于角度 θ \theta θ 及连杆长度的变化关系。

很容易得到:x = (R + L) - (ad + dc) = (R + L} - (R.cos θ + L.cos φ) . (1)

cosφ 如何通过 θ \theta θ表达出来呢?

b d = R ⋅ sin ⁡ ( θ ) = L ⋅ sin ⁡ ( ϕ ) t h u s sin ⁡ ( ϕ ) = R L sin ⁡ ( θ ) b d=R \cdot \sin (\theta)=L \cdot \sin (\phi) \quad thus \quad \sin (\phi)=\frac{R}{L} \sin (\theta) bd=Rsin(θ)=Lsin(ϕ)thussin(ϕ)=LRsin(θ)

L e t   n = L R   h e n c e sin ⁡ ( ϕ ) = sin ⁡ ( θ ) n Let \text { }n=\frac{L}{R}\ \\ hence \sin (\phi)=\frac{\sin (\theta)}{n} Let n=RL hencesin(ϕ)=nsin(θ)

sin ⁡ 2 ( ϕ ) + cos ⁡ 2 ( ϕ ) = 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值