强烈推荐 | 一文说透RT-DETR算法改进:无缝使用所有的YOLOv8算法改进方案
(以修改主干Backbone、Neck为例)模版,将其无缝衔接转到RT-DETR算法改进上
《芒果剑指 RT-DETR 目标检测算法 改进》 适用于芒果专栏改进RT-DETR算法
由于 YOLOv8 和 RT-DETR 算法 同属一个项目,所以改进步骤大部分都差不多,有区别的在以下改进文件部分,核心说明见正文
文章目录
一、百度 RT-DETR 算法介绍
RT-DETR模型架构图显示了骨干网络的最后三个阶段{S3,S4,S5}作为编码器的输入。高效的混合编码器通过尺度内特征交互(AIFI)和跨尺度特征融合模块(CCFM)将多尺度特征转换为图像特征序列。IoU 感知查询选择用于选择固定数量的图像特征作为解码器的初始对象查询。最后,具有辅助预测头的解码器迭代优化对象查询以生成框和置信度分数。<