PCL 从深度图像中提取NARF特征

本文介绍了NARF(法线对齐径向特征)关键点的概念,用于从深度图像中识别物体。关键点提取过程包括边缘检测、表面变化分析、兴趣值计算和平滑过滤等步骤,旨在确保关键点的稳定性和重复探测能力。在PCL中实现该方法,并通过代码展示运行结果,分析了无关键点输出的情况可能源于输入点云数据不满足重复探测的要求。
摘要由CSDN通过智能技术生成

一.关键点的概念 

NARF(法线对齐径向特征)关键点是为了从深度图像中识别物体而提出的,关键点探测的重要一步是减少特征提取时的搜索空间,把重点放在重要的结构上,对NARF关键点提取过程有以下要求:①提取的过程必须考虑边缘以及物体表面变化信息在内;②关键点的位置必须稳定的可以被重复探测,即使换了不同的视角;③关键点所在的位置必须有稳定的支持区域,可以计算描述子和进行唯一的估计法向量。为了满足上述要求,提出以下探测步骤来进行关键点
提取:(1)遍历每个深度图像点,通过寻找在近邻区域有深度突变的位置进行边缘检测。
(2)遍历每个深度图像点,根据近邻区域的表面变化决定一测度表面变化的系数,以及变化的主方向。
(3)根据第二步找到的主方向计算兴趣值,表征该方向与其他方向的不同,以及该处表面的变化情况,即该点有多稳定。
(4)对兴趣值进行平滑过滤。
(5)进行无最大值压缩找到最终的关键点,即为NARF关键点。

二.代码实现

#include <iostream>

#include <boost/thread/thread.hpp>
#include <pcl/range_image/range_image.h>
#include <pcl/io/pcd_io.h>
#include <pcl/visualization/range_image_visualizer.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/features/range_image_border_extractor.h>
#include <pcl/keypoints/narf_keypoint.h>
#include <pcl/features/narf_descriptor.h>
#include <pcl/console/parse.h>

typedef pcl::PointXYZ PointType;

// --------------------
// -----Parameters-----
// --------------------
float angular_resolution = 0.5f;           angular_resolution为模拟的深度传感器的角度分辨率,即深度图像中一个像素对应的角度大小
float support_size = 0.2f;                 //点云大小的设置
pcl::RangeImage::CoordinateFrame coordinate_frame = pcl::RangeImage::CAMERA_FRAME;     //设置坐标系
bool setUnseenToMaxRange = false;
bool rotation_invariant = true;

// --------------
// -----Help-----
// --------------
void
printUsage(const char* progName)
{
	std::cout << "\n\nUsage: " << progName << " [options] <scene.pcd>\n\n"
		<< "Options:\n"
		<< "-------------------------------------------\n"
		<< "-r <float>   angular resolution in degrees (default " << angular_resolution << ")\n"
		<< "-c <int>     coordinate frame (default " << (int)coordinate_frame << ")\n"
		<< "-m           Treat all unseen points to max range\n"
		<< "-s <float>   support size for the interest points (diameter of the used sphere - "
		"default " << support_size << ")\n"
		<< "-o <0/1>     switch rotational invariant version of the feature on/off"
		<< " (default 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值