TI FMCW毫米波雷达基础(2)——测速原理

1.简介

测速的基本原理,是依据多普勒效应:

当移动台以恒定的速率沿某一方向移动时,由于传播路程差的原因,会造成相位和频率的变化,通常将这种变化称为多普勒频移。它揭示了波的属性在运动中发生变化的规律。

由于物体距离的变化 Δ R \Delta R ΔR会引起接收信号相位的变化,因此通过观测一段时间内的接收信号的相位变化,即可通过 Δ R / t \Delta R /t ΔR/t估算出此时目标的速度。
目标速度的测量主要需要解答以下问题:

  • 速度估算的原理是什么?
  • 同一距离处,多个目标的速度如何获取?
  • 同一距离下,两个目标的速度相差多大时,可将其有效区分?
  • 可测量的最大速度?

2 速度估算原理

傅里叶变换 FFT

在这里插入图片描述

  • FFT变换将时域信号转换为频域;
  • 时域中的正弦波在频域中产生一个峰值。 通常,频域中的信号为复数(即每个值都是具有振幅和相位的相量)。
  • 具有相同频率、不同初始相位的正弦信号经过FFT变换,在相同横坐标位置处(频率相等)产生峰值,但峰值信号的相位不同,峰值的相位等于正弦波的初始相位

中频信号

在这里插入图片描述

  • 中频信号IF的初始相位 Φ 0 \Phi_0 Φ0是 IF信号起点对应的时间点的TX信号与RX信号的相位差: ϕ 0 = 2 π f c τ \phi_0=2\pi f_cτ ϕ0=2πfcτ
    由于: λ = T c = c f c \lambda=Tc=\frac{c}{f_c} λ=Tc=fcc以及 τ = 2 d c τ=\frac{2d}{c} τ=c2d
    可进一步推导得:
    ϕ 0 = 4 π d λ \phi_0= \frac{4\pi d}{\lambda} ϕ0=λ4πd
    因此,对于与雷达位置为d的物体,IF信号将式一个正弦波, A s i n ( 2 π f o t + ϕ 0 ) Asin(2\pi f_o t+\phi_0) Asin2πfot+ϕ0
    其中, f 0 = S 2 d c f_0= \frac{S2d}{c} f0=cS2d, ϕ 0 = 4 π d λ \phi_0= \frac{4\pi d}{\lambda} ϕ0=λ4πd
    在这里插入图片描述
    在这里插入图片描述

估算原理

FMCW雷达发射间隔为 T c Tc Tc的两个Chirp,每个反射的Chirp脉冲通过Range-FFT进行处理。对应于每个Chirp的Range-FFT,将在同一位置出现不同相位的峰值。该相位差与物体移动的位移有关。
在这里插入图片描述
由于 Δ ϕ = 4 π Δ d λ \Delta\phi= \frac{4\pi \Delta d}{\lambda} Δϕ=λ4πΔd
其中, Δ d = v T c \Delta d=vT_c Δd=vTc
可得 v = λ Δ ϕ 4 π T c v= \frac{\lambda \Delta\phi}{4\pi T_c} v=4πTcλΔϕ


最大速度
由于速度测量基于相位差,因而会存在速度模糊性,仅当 Δ ϕ < π \Delta\phi< \pi Δϕ<π时具有非模糊性。可推导出最大速度: v m a x = λ 4 π T c v_{max}=\frac{\lambda}{4\pi T_c} vmax=4πTcλ


同一距离处多个物体的速度估算
如果速度不同的多个移动物体在测量时与雷达的距离相同,则双线性调频脉冲速度测量方法将不起作用,由于物体与雷达的距离相同,因而生成的IF信号频率将相同,经过距离FFT会产生单个峰值,该峰值表示距离相同物体的合并信号。
为测量速度,必须发射两个以上的Chirp信号。
对同一距离处多个物体的速度估算,需要发射一组N个等间隔的线性调频脉冲,称为“帧”(Frame)。
在这里插入图片描述
-对于等距不同速的两个物体,在同一帧内,通过Range FFT 后在峰值处提取各相位,并做Doppler FFT,会产生两个具有不同的峰值,其对应的横坐标为各物体的相位差。
同距不同速的两个物体的速度分别为:
v 1 = λ ω 1 4 π T c v_1=\frac{\lambda \omega_1}{4\pi T_c} v1=4πTcλω1 v 2 = λ ω 2 4 π T c v_2=\frac{\lambda \omega_2}{4\pi T_c} v2=4πTcλω2


速度分辨率
根据离散傅里叶变换理论,两个离散频率 ω 1 \omega_1 ω1 ω 2 \omega_2 ω2仅当 Δ ω > 2 π N \Delta \omega>\frac{2\pi}{N} Δω>N2π才能进行分辨。
在这里插入图片描述
因此,速度分辨率取决于帧的时间,即 v r e s = λ 2 T f v_{res}=\frac{\lambda}{2T_f} vres=2Tfλ


上述参考:《Introduction to mmwave Sensing: FMCW Radars》

### 实现FMCW雷达的FFT测距算法 为了实现FMCW雷达的FFT测距算法,可以按照以下方法构建MATLAB程序。该过程涉及信号产生、添加噪声、混频处理、快速傅里叶变换(FFT)以及最终的距离计算。 #### 1. 初始化参数设置 定义必要的物理常数和系统配置参数: ```matlab c = 3e8; % 光速 (m/s) f_start = 76e9; % 起始频率 (Hz) B = 400e6; % 频带宽度 (Hz) T_chirp = 1e-3; % Chirp周期时间 (s) R_max = c * T_chirp / 2; % 最大可检测范围 (m) fs = 5e3; % 采样率 (samples per second) t = linspace(-T_chirp/2, T_chirp/2, fs*T_chirp); % 时间向量 ``` #### 2. 发射信号生成 创建线性调频信号作为发射源: ```matlab tx_signal = exp(1i*2*pi*(f_start*t + B/(2*T_chirp)*t.^2)); ``` #### 3. 接收回波模拟 假设存在一个位于特定位置的目标,并加入一定的多普勒效应来模仿运动物体的影响;同时考虑路径损耗等因素造成的衰减效果: ```matlab target_distance = 50; % 目标距离 (meters) doppler_shift = 0; % 多普勒偏移 (Hz), 这里设为静止状态下的情况 rx_signal_delayed = tx_signal .* exp(-1i*2*pi*doppler_shift*t).*exp(-1i*2*pi*f_start*(-2*target_distance/c)).*exp(-1i*2*pi*B*(-2*target_distance/c)/T_chirp); ``` #### 4. 加入随机噪声 引入加性白高斯噪声(AWGN),使得接收到的数据更接近实际情况: ```matlab noise_power_db = -100; awgn_noise = sqrt(10^(noise_power_db/10))/sqrt(2)*(randn(size(t))+1j*randn(size(t))); rx_signal_noisy = rx_signal_delayed + awgn_noise; ``` #### 5. 混频操作 对接收到带有延迟的信息与原始发送端进行相乘运算得到差拍信号: ```matlab beat_frequency = abs(ifftshift(rx_signal_noisy.*conj(tx_signal))); ``` #### 6. 执行FFT并求取峰值索引 通过执行离散傅立叶转换(DFT)找到最强响应对应的频率分量,进而推算出实际目标的位置信息: ```matlab Nfft = length(beat_frequency); df = B/Nfft; % Perform FFT and find peak index Y = fft(beat_frequency,Nfft); P2 = abs(Y/Nfft); P1 = P2(1:Nfft/2+1); [~, idx] = max(P1); detected_range = R_max * ((idx-1)/(Nfft/2)); % 计算对应的实际距离 [^1] ``` 此段代码展示了如何在MATLAB环境中完成一次完整的FMCW雷达测距流程,包括但不限于信号的设计、传输通道建模、数据预处理直至最后的结果解析等多个方面的工作。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值