Cross Entropy Loss

CrossEntropyLoss用于衡量预测概率分布q与实际类别分布p之间的差异。在三分类任务中,如猫、猪、狗,若实际类别为猫,概率为1,预测概率分别为0.6、0.2、0.2,交叉熵计算反映了预测的准确性。
摘要由CSDN通过智能技术生成

Cross Entropy Loss

使用softmax函数可以将特征向量映射为所属类别的概率,可以看作是预测类别的概率分布q(ci) ,有

 

其中ci为某个类别。

设训练数据中类别的概率分布为p(ci) ,那么目标分布p(ci)�(��) 和预测分布q(ci)�(��)的交叉熵为:

每个训练样本所属的类别是已知的,并且每个样本只会属于一个类别(概率为1),属于其他类别概率为0。具体的,可以假设有个三分类任务,三个类分别是:猫,猪,狗。现有一个训练样本类别为猫,则有:

p(cat)p(pig)p(dog)=1=0=0(4)(5)(6)(4)�(���)=1(5)�(���)=0(6)�(���)=0

通过预测得到的三个类别的概率分别为:q(cat)=0.6,q(pig)=0.2,q(dog)=0.2�(���)=0.6,�(���)=0.2,�(���)=0.2 ,计算p� 和q� 的交叉熵为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值