Cross Entropy Loss
使用softmax
函数可以将特征向量映射为所属类别的概率,可以看作是预测类别的概率分布q(ci) ,有
其中ci为某个类别。
设训练数据中类别的概率分布为p(ci) ,那么目标分布p(ci)�(��) 和预测分布q(ci)�(��)的交叉熵为:
每个训练样本所属的类别是已知的,并且每个样本只会属于一个类别(概率为1),属于其他类别概率为0。具体的,可以假设有个三分类任务,三个类分别是:猫,猪,狗。现有一个训练样本类别为猫,则有:
p(cat)p(pig)p(dog)=1=0=0(4)(5)(6)(4)�(���)=1(5)�(���)=0(6)�(���)=0
通过预测得到的三个类别的概率分别为:q(cat)=0.6,q(pig)=0.2,q(dog)=0.2�(���)=0.6,�(���)=0.2,�(���)=0.2 ,计算p� 和q� 的交叉熵为: