论文地址:https://ieeexplore.ieee.org/document/8593986
1 简介
model-free 强化学习,Q-learning
方法:训练两个网络,分别预测像素级的push的Q-value 和 像素级的grasp的Q-value;Q-value最高的push或grasp被执行。
每个像素点的push被定义为从左向右推10cm;grasp被定义为以该点为中心,10cm为抓取宽度,水平抓取。
在测试时,图像被旋转16次,分别送入网络,因此可实现16个角度上的push和grasp。
本文采用高维action
,即抓取位姿和推;QT-Opt等方法采用更低维的action
,即末端偏移。
高维action
在全驱动系统
中是可行的,全驱动指物体的运动完全由机械手控制,如本文的抓取;
低维action
更适合于欠驱动系统
,需要根据系统反馈实时调整action,最终达到目标状态。欠驱动指物体的运动由环境和机械手同时决定,如预抓取、沿轨迹推物体等。
2 方法
state:RGB-D图像
action:在第一节描述
grasp reward:抓取成功 reward=1。如果机械手夹爪的张开长度大于阈值,则抓取成功。
push reward:场景图像的差值大于阈值 reward=0.5。该reward鼓励push动作使场景产生变化,但没有明确地使未来的抓取更方便。
Q网络结构:两个网络的结构相同。首先分别将RGB图像和D图像送入并行的DenseNet,然后合并特征,通过卷积和差值上采样输出预测Q-value。
1、如何给push设置reward
答:场景图像的差值大于阈值 reward=0.5。该reward鼓励push动作使场景产生变化,但没有明确地使未来的抓取更方便。
2、如何训练像素级预测网络
答:只对执行action的像素点p计算梯度,其他全为0
3 想法
1、本文方法本质上还是监督学习,只不过把grasp/push的置信度标签换成了reward,本质上一样