论文略读:GRAG:GraphRetrieval-Augmented Generation

202404 arxiv

1 motivation

  • 在许多应用场景中,如科学文献网络、推荐系统和知识图谱,文档之间存在复杂的关联,这些关联在传统的RAG模型中常常被忽略
    • 例如,在处理科学文献时,RAG仅基于文本相似性的检索方法无法充分利用文献之间的引用关系和主题结构。这种忽视导致了生成质量的瓶颈。
  • ——>论文提出了GRAG,通过考虑文献之间的引用网络和主题分布将拓扑信息在检索阶段和生成阶段利用起来,提高生成式语言模型的生成质量和图场景下的上下文一致性

2 方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值