1 Continued Pretraining
- Continued pretraining 是指在一个已经预训练过的模型基础上继续进行预训练的过程。
- 这个过程通常发生在一个模型已经在一个大型的通用数据集上训练过,但是希望模型能更好地理解特定的领域或类型的数据时。
- 例如,一个在互联网文本上预训练的自然语言处理模型可能会在医学文本上继续进行预训练,以更好地处理医学相关的查询和任务。
2 Finetuning
- 在预训练模型的基础上,通过在特定任务的数据集上进行训练来调整模型参数的过程
- 这个过程的目的是使模型能够在特定任务上表现更好,如文本分类、图像识别或其他任务
3 区别
- 目的差异:
- Continued pretraining 主要是为了使模型更好地理解和处理特定领域或类型的数据
- finetuning 的目的是优化模型在特定任务上的表现。
- 数据集差异:
- Continued pretraining 通常在领域特定的数据集上进行,而不一定是特定任务的数据集。
- Finetuning 则直接在特定任务的数据集上进行,这个数据集包含了任务相关的标签信息。
- 应用阶段差异:
- Continued pretraining 可以视为预训练阶段的延续
- finetuning 则是在此基础上进行的任务特定优化。