Autoware之激光和图像联合标定

说明:联合标定需要提前标定好相机的内外参,这个推荐也用autoware,个人觉得没什么难度,就不写文章了,也没什么时间!联合标定的话,好久没搞了,写一篇博客以防老年痴呆忘记了!!
(重要说明,autoware默认坐标系是x轴向前,谨记坐标系对应)
一:环境说明
1.ubuntu 1804
2.ros-melodic版本
3.image_view2

二:下载安装包,并编译
默认大家都下载并安装好了autoware!!!(其实是我懒得把这个文件上传百度云了~0~)

三:联合标定方法
1.试运行
注意:这里的yaml文件是camera的标定文件,后面image_src对应填写的是你的摄像头话题;

cd autoware.ai
source install/setup.bash
roslaunch autoware_camera_lidar_calibrator camera_lidar_calibration.launch intrinsics_file:=/PATH/TO/YYYYmmdd_HHMM_autoware_camera_calibration.yaml image_src:=/image

注意观察,如果报错,看第一条错,我的是缺少image_view2这个安装包,所以运行

sudo apt install ros-melodic-image-view2

安装好后,重新开始,如果试运行没有报错,证明环境没有问题,看下一步;

2.查看自己准备的包里,需要包含两个话题,一个是雷达点云话题,一个camera的话题。

cd autoware.ai
source install/setup.bash
roslaunch autoware_camera_lidar_calibrator camera_lidar_calibration.launch intrinsics_file:=/PATH/TO/YYYYmmdd_HHMM_autoware_camera_calibration.yaml image_src:=/your_image_topic

同时,令起终端

rosbag play your.bag

打开后,页面自动弹出camera的画面如下图所示:
在这里插入图片描述

令起终端打开rviz,将点云调出来,使其可视化,界面上有用的信息如下图所示:
在这里插入图片描述
注意我画圈的地方,左下角那个是 lidar_point:camera_point,其中camera_point是在图像上点的,你要对比图像和点云数据,都能看到且很有辨识度的点就可以点。

注意:先点图像点,再去雷达数据上点point,图像上是用鼠标左键点一下后,在点的那个位置会留下一个红点,证明是你选择的camera_point,然后,在rviz里,左上角那个圈里画的publish_point就是用来点lidar_point的工具,点击publish_point后,按钮变灰色,移动鼠标,对比刚才图像上选点的位置点雷达点(建议将rviz中雷达数据放大来点,尽量精确),点到了,按钮恢复,同时number of points:0:1变为number of points:1:1;

以此,点够9对点后,系统自动保存标定文件在/home/文件夹之下命名方式为YYYYmmdd_HHMM_autoware_lidar_camera_calibration.yaml,同时在终端 也会打印出标定信息矩阵之类的!

四:查看标定效果
1.将points2image.cpp中将else语句中points_topic = “points_raw” 修改为我们自己雷达数据的topic.
附上我的文件目录

autoware.ai/src/visualization/points2image/nodes/points2image/points2image.cpp

2.单独编译这个points2image.cpp文件

cd autoware.ai
colcon build --cmake-args -DCMAKE_BUILD_TYPE=Release --packages-select points2image
source install/setup.bash
rosrun runtime_manager runtime_manager_dialog.py 

3.在上一步打开的 Runtime Manager -> Sensing -> Calibration Publisher, 跳出来的界面中修改 target_frame为自己点云数据的frame_id,同时加载联合标定文件,并将image topic source更改为自己的图像topic名称,然后点击OK,之后在点击Calibration Publishe下面的Points image按钮

在这里插入图片描述在这里插入图片描述

4.在RViz中,Panels -> Add New Panel中添加ImageViewerPlugin, 此时ImageViewerPlugin会出现在RViz的左下方,填写Image Topic:/camera_topic, Point Topic:/points_image
然后播放数据包,会看到将点云数据映射到图像上之后的融合图,通过融合图可以直观看出标定效果。

效果我就不放了。公司的同事标的不好,就让我帮忙看了一下,我给的建议是,
1.图像与雷达数据首先要都能在同一个视角中看到;
2.多角度,多尺度来选点,不能只在一个方向上选点;
3.激光点云数据会跳动,所以标定的时候一定要将rviz中激光数据放大,从各个方向确定那个点是不是图像中对应的点;
4.如果可以,建议在地面处也造一个角点进行选点。

Authware古诗教程是一款专门为学习和欣赏古诗而设计的软件。它提供了丰富的古诗资源和相关的学习功能,帮助用户更好地理解和感受古代文化。 首先,Authware古诗教程拥有庞大的古诗库,涵盖了各个朝代的经典古诗。用户可以通过浏览功能,随时查阅自己喜欢的古诗,了解作者背景和作品的内涵。 其次,Authware古诗教程提供了详细的古诗解析和注释。对于初学者来说,读懂古诗可能会有一些难度,但通过软件提供的解析和注释,用户可以更好地理解古人的用词和意境,进一步欣赏古诗之美。 此外,Authware古诗教程还提供了古诗背景介绍和相关阅读材料。了解古代社会背景和文化氛围,能够更加全面地把握古诗的内涵和艺术价值。通过相关阅读材料的学习,用户可以拓展自己的知识面,提升古诗欣赏的层次。 最后,Authware古诗教程还提供了互动学习和分享社区。用户可以与其他热爱古诗的人交流学习,分享自己的感悟和见解。这种互动交流可以激发更多的灵感和思考,使学习和欣赏古诗变得更加有趣和有意义。 总之,Authware古诗教程是一款功能丰富、易于操作的软件,它可以帮助用户更好地学习和欣赏古诗,了解古代文化,并与其他人分享自己的想法。无论是初学者还是资深爱好者,都可以在这个平台上找到自己需要的资源和交流机会。
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值