激光SLAM之NDT算法(1)算法原理

/激光SLAM之NDT算法(2)-建图中我会给出实测可用的建图代码,并予以解释代码结构,这里就先讲讲原理吧!!!/
无人车激光SLAM系统简单可以分为建图和定位两部分,无人车的定位问题,实际上就是要找出无人车当前在地图的那个位置(并且要求精度在厘米级别)。其中有一类方法被称为即时定位与地图构建(simultaneous localization and mapping,SLAM),它能够实现导航定位而不需要地图,然而,真正实现无人车的SLAM是非常困难的,作为交通工具,远距离的行驶会使得实时构建地图的偏差变大。所以,在已经拥有高精度地图的前提下去做无人车的定位,是更加现实,简单的。NDT就是一类利用已有的高精度地图和激光雷达实时测量数据实现高精度定位的技术。
NDT综述

正态分布变换算法是一个配准算法,他应用于三维点的统计模型,使用标准最优化技术来确定联合和点云间的最优的匹配,因为其在配准过程中不利用对应点的特征计算和匹配,所以时间比其他方法快。即类似与图像匹配一样的三维点云匹配。

NDT原理及优化

​ NDT,即是normal distribution transformation的缩写,正态分布变换!该算法的核心思想是首先将空间离散为方格,若是二维空间,则离散为栅格,若是三维空间则离散划分为立方体,这样就可以将采样的点云划分到不同的网格中,这样可以很方便的描述点云的局部特性,例如点云局部的形状(直线、平面or球体)、方向(平面法向、直线方向等)。例如现在我们可以利用统计的方法分析每一个网格的特性。

​ 正态分布不仅是一种广泛存在的数据分布形式,同时又具有良好的数学性质,均值和方差(高维情况:均值向量和协方差矩阵),因此总是能在各种SLAM中的建模中看到它。其次,高维情况下的协方差矩阵还能反映点云的局部特性。假设现在已知有N个点落在了一个格子里面,为了简化问题就说是二维情况,然后我们可以很容易的求出这NNN个点的均值μ和协方差矩阵Σ,显然对于二维情况,该协方差矩阵为2×2的矩阵。若这几个点在一条直线上,则容易知道该协方差矩阵的秩为1,因此对应的特征值其中一个为0;而当这几个点近似在一条直线上时,则协方差矩阵的一个特征值会明显大于另外一个。当大致均匀分布时,两个特征值会大小类似。因此,正态分布不仅具有良好的数学性质来描述分布,还能够反映点云的局部形态。
在这里插入图片描述
既然正态分布可以反映点云的局部形态,自然可以利用正态分布来表示局部点云,这样就可以利用数学公式来表示一组离散的点云。
在这里插入图片描述
用公式表达就是:
在这里插入图片描述NDT算法原理:

1. 将空间(reference scan)划分成各个格子cell

2.将点云投票到各个格子

3.计算格子的正态分布PDF参数

4.将第二幅scan的每个点按转移矩阵T的变换

5.第二幅scan的点落于reference的哪个 格子,计算响应的概率分布函数

6.求所有点的最优值,目标函数为

注意:PDF可以当做表面的近似表达,协方差矩阵的特征向量和特征值可以表达表面信息(朝向、平整度)
格子内少于3个点,经常会协方差矩阵不存在逆矩阵,所以只计算点数大于5的cell,涉及到下采样方法。

原理解释:
NDT算法的第一步就是将参考点云网格化(对于三维地图来说,即使用一个一个小立方体对整个空间的扫描点进行划分),对于每一个网格(cell),基于网格内的点计算其概率密度函数(probability density function, PDF),
在这里插入图片描述
其中, y⃗ k=1,…,m表示一个网格内所有的扫描点。那么一个网格的概率密度函数则为:
在这里插入图片描述
使用正态分布来表示原本离散的点云有诸多好处,这种分块的(通过一个个cell)光滑的表示是连续可导的,每一个概率密度函数可以被认为是一个局部表面(local surface)的近似,它不但描述了这个表面在空间中的位置,同时还包含了这个表面的方向和光滑性等信息。下图是一个3D点云及其网格化效果:
在这里插入图片描述
上图中立方体的边长为 1 米,其中越明亮的位置表示概率越高。此外,局部表面的方向和光滑性则可以通过协方差矩阵的特征值和特征向量反映出来。我们以三维的概率密度函数为例,如果三个特征值很接近,那么这个正态分布描述的表面是一个球面,如果一个特征值远大于另外两个特征值,则这个正态分布描述的是一条线,如果一个特征值远小于另外两个特征值,则这个正态分布描述的是一个平面。下图描述了协方差矩阵特征值和表面形状之间的关系:
在这里插入图片描述
变换参数和最大似然

当使用NDT配准时,目标是找到当前扫描的姿态,使当前扫描的点位于参考扫描(3D地图)表面上的可能性最大化。那么我们需要优化的参数就是对当前扫描的点云的变换(旋转,平移等),我们使用一个变换参数 p⃗
来描述。当前扫描为一个点云 X={x⃗ 1,…,x⃗ n} ,给定扫描点集合 X 和变换参数 p⃗ ,令空间转换函数 T(p⃗ ,x⃗ k) 表示使用使用姿态变换 p⃗ 来移动点 x⃗ k ,结合之前的一组状态密度函数(每个网格都有一个PDF),那么最好的变换参数 p⃗

应该是最大化似然函数的姿态变换:

在这里插入图片描述
那么最大化似然也就相当于最小化负对数似然 −logΘ,
在这里插入图片描述
到这里,就到了我们最熟悉的最优化的部分了。现在的任务就是使用优化算法来调整变换参数 p⃗ 来最小化这个负对数似然。NDT算法使用牛顿法进行参数优化。我们不难看出,这里的概率密度函数 f(x⃗ ) 其实并不要求一定是正态分布,任何能够反映扫描表面的结构信息且对异常扫描点具有鲁棒性的概率密度函数都是可以的。

<think>好的,用户想了解激光雷达SLAM建图算法的实现与应用。首先我需要确定用户的需求层次,可能他们需要从基础原理到具体应用的全面介绍。根据提供的引用资料,GMapping算法和A-Loam是重点,需要详细讲解这两个部分。 首先,我应该先解释激光雷达SLAM的基本原理,包括传感器的作用和核心问题,比如定位与建图的同步。然后,结合引用中的信息,提到GMapping作为基于粒子滤波的2D算法,以及A-Loam作为三维激光SLAM的优化方法。需要确保使用正确的数学公式格式,比如粒子滤波的权重计算用行内公式,而状态估计方程用独立公式块。 接下来,实现方法部分要分步骤说明,包括数据预处理、前端匹配、后端优化等。每个步骤要简明扼要,可能涉及ICP或NDT算法,这里需要提到数学表达式,例如ICP的目标函数。同时,注意引用标记的位置,比如在提到GMapping时添加[^1][^2]。 应用案例部分需要涵盖自动驾驶、服务机器人等场景,并结合引用中的Velodyne16线雷达和A-Loam的例子。这里可能需要强调多传感器融合的趋势,如引用[2]提到的IMU和相机结合。 最后,生成的相关问题要围绕用户可能进一步关心的主题,比如算法对比、多传感器融合、实际挑战等,确保问题具有针对性,帮助用户深入探索。 需要检查LaTeX格式是否正确,所有数学公式用$或$$包裹,并且结构清晰,段落分明。同时确保中文回答流畅,没有使用Markdown格式,除了代码块。另外,引用标识要自然放置在相关内容的末尾,如算法名称后面。 可能还需要补充一些实现细节,比如代码示例的位置,但根据用户示例,代码块是允许的,所以可以加入GMapping或A-Loam的伪代码或关键代码片段,增强实用性。 最后,确保回答真实可靠,引用提供的资料,并引导用户参考相关文献或开源项目,如ROS中的GMapping包和A-Loam的GitHub仓库。</think>### 激光雷达SLAM建图算法实现与应用 #### 一、算法原理 激光雷达SLAM通过激光雷达获取环境几何信息,结合运动模型与观测模型实现同步定位与建图。核心问题可表示为: $$ p(x_t, m | z_{1:t}, u_{1:t}) $$ 其中$x_t$为$t$时刻的机器人位姿,$m$为环境地图,$z$为观测数据,$u$为控制输入。 **GMapping算法**基于粒子滤波框架: 1. 预测:根据运动模型更新粒子位姿 2. 权重计算:$\omega^{(i)} = p(z_t | x_t^{(i)}, m_{t-1}^{(i)})$ 3. 重采样:保留高权重粒子 #### 二、实现方法 ```python # GMapping算法伪代码示例 def gmapping_slam(scan_data, odom): particles = initialize_particles() for each particle: predict_motion(odom) update_weight(scan_data) resample_particles() build_occupancy_grid() return map, pose ``` 1. **数据预处理** - 去噪:滤除激光雷达的无效点 - 运动畸变补偿:通过$v = \frac{\Delta x}{\Delta t}$估算运动速度 2. **前端匹配** - 使用ICP算法最小化对应点距离: $$ \min_{R,t} \sum_{i=1}^n \| Rp_i + t - q_i \|^2 $$ - 或NDT(正态分布变换)方法 3. **后端优化** - 基于图优化的SLAM框架: $$ X^* = \arg\min_X \sum e_{ij}^T\Omega_{ij}e_{ij} $$ 其中$e_{ij}$为边约束,$\Omega_{ij}$为信息矩阵[^1] #### 三、典型应用案例 1. **二维建图**:服务机器人使用GMapping构建室内栅格地图(分辨率0.05m) 2. **三维建图**: - A-Loam算法处理Velodyne16线雷达数据 - 关键代码模块: ```cpp // 特征提取 void extractFeatures(pcl::PointCloud<PointXYZI>::Ptr cloud) { // 计算曲率并分类角点/平面点 } ``` 3. **多传感器融合**: - 激光雷达+IMU:IMU提供高频姿态估计 - 激光雷达+相机:语义SLAM实现物体识别 #### 四、性能优化方向 1. 计算加速:使用KD-tree加速最近邻搜索 2. 闭环检测:基于Scan Context描述符实现$O(1)$时间复杂度的回环检测 3. 动态物体处理:通过多帧一致性检测消除动态障碍物影响
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值