DataScience&ML:基于heart disease心脏病分类预测数据集利用决策数算法基于graphviz/eli5/pdpbox/shap库实现模型可解释性(全局特征重要性解释/部分特征重要性/局部特征重要性解释/局部决策图可解释/误分类样本可视化)之详细攻略
目录
# 3.2.2、可视化DT树模型(或RF中的一个)并保存图片
# T2、基于模型本身的解释(eli5)—如随机森林树模型,但模型可能会存在偏
# T3、基于模型度量的解释(eli5)—PFI置换特征重要性并可视化
# (1)、PDP图解释模型可视化:基于pdpbox库计算某特征的模型预测分布
# (3)、双特征交互PDP可视化解释模型预测:特征交互对模型预测结果的影响
# (1)、利用Shap值解释RFC模型:计算X_test每个样本的每个特征对两类预测结果的shap值
# (2)、计算X_test各特征shap值summary_plot散点图、条形图、小提琴图可视化
# (3)、计算X_test成对交互特征shap值summary_plot可视化
# (4)、计算X_test某个特征变化(特征值的分布)时对应shap值的影响变化(shap值的分布)
# (5)、计算X_test某特征/交互特征分布对应shap值的影响变化
# (6)、计算X_test某特征局部独立图可视化:某特征的变化如何影响模型的输出及该特征值的分布,纵轴是模型的预测结果
# (1)、计算单个样本的成对交互特征shap值条形图、热图可视化 编辑
# (3)、基于expected_value和shap值计算单个样本各个特征的贡献度并瀑布图可视化???
# 4.4、局部特征&部分特征重要性解释可视化——综合分析交互力图可视化(局部多个样本、逐个特征)