Py之hyperopt:hyperopt库的简介、安装、使用方法之详细攻略

Py之hyperopt:hyperopt库的简介、安装、使用方法之详细攻略

目录

hyperopt库的简介

1、hyperopt的用法

hyperopt库的安装

hyperopt库的使用方法

1、基础用法

2、定义参数空间


hyperopt库的简介

hyperopt是python的分布式异步超参数优化库。Hyperopt 旨在适应基于高斯过程和回归树的贝叶斯优化算法,但目前尚未实现。

Hyperopt的工作是在一组可能的参数上找到一个标量值的,可能随机函数的最佳值。虽然许多优化包假定这些输入来自向量空间,但Hyperopt不同,它鼓励您更详细地描述搜索空间。通过提供关于函数定义位置的更多信息,以及您认为最佳值在何处,可以让超选择算法更有效地搜索。

源文档Hyperopt Documentation

GitHub文档FMin · hyperopt/hyperopt Wiki · GitHub

1、hyperopt的用法

>> 目标函数最小化
>> 用于搜索的空间
>> 用于存储搜索的所有点计算的数据库
>> 要使用的搜索算法

      选择搜索算法很简单,只需传递algorithm =hyperopt.tpe。Suggest而不是algorithm =hyperopt.random.suggest。搜索算法实际上是可调用的对象,其构造函数接受配置参数,但这就是关于选择搜索算法的机制的全部内容。

hyperopt库的安装

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple hyperopt

 

hyperopt库的使用方法

1、基础用法

# define an objective function
def objective(args):
    case, val = args
    if case == 'case 1':
        return val
    else:
        return val ** 2

# define a search space
from hyperopt import hp
space = hp.choice('a',
    [
        ('case 1', 1 + hp.lognormal('c1', 0, 1)),
        ('case 2', hp.uniform('c2', -10, 10))
    ])

# minimize the objective over the space
from hyperopt import fmin, tpe
best = fmin(objective, space, algo=tpe.suggest, max_evals=100)

print best
# -> {'a': 1, 'c2': 0.01420615366247227}
print hyperopt.space_eval(space, best)
# -> ('case 2', 0.01420615366247227}

2、定义参数空间

# 定义参数空间
from hyperopt import hp
import numpy as np
LGBMR_space_params = {
    'learning_rate': hp.loguniform('learning_rate', np.log(0.01), np.log(0.2)),
    'max_depth':    hp.quniform('max_depth', 0, 100, 1),
    'n_estimators': hp.quniform('n_estimators', 30, 150, 1),
    'num_leaves':    hp.quniform('num_leaves', 30, 150, 1),
    'subsample_for_bin': hp.quniform('subsample_for_bin', 20000, 300000, 20000),
    }
print(LGBMR_space_params)

Hyperopt是一个用于超参数优化的Python包。它使用贝叶斯优化算法和模型选择算法,来寻找模型的最佳超参数。Hyperopt包可以帮助我们自动搜索超参数空间,找到最适合我们模型的超参数组合。这个包非常强大并且易于使用。 要下载Hyperopt包,我们可以通过以下步骤来完成: 1. 安装Python:首先,我们需要在我们的计算机上安装Python。可以从官方网站上下载最新版本的Python,并按照安装向导进行安装。 2. 安装pip:在安装Python之后,我们需要安装pip,它是Python的包管理器。pip可以帮助我们轻松地安装和管理Python包。 3. 打开命令提示符或终端:在Windows系统中,我们可以按下Win键+R键,然后输入"cmd"并按下回车键来打开命令提示符。在类Unix系统中,我们可以按下Ctrl+Alt+T键来打开终端。 4. 使用pip安装Hyperopt:在命令提示符或终端中,我们可以输入以下命令来安装Hyperopt包:pip install hyperopt 5. 等待安装完成:一旦我们输入了上面的命令,pip就会自动下载并安装Hyperopt包。我们只需要耐心等待安装过程完成。 安装完成后,我们就可以在Python使用Hyperopt包了。通过导入hyperopt模块,我们可以开始使用Hyperopt的超参数优化功能。 总的来说,Hyperopt是一个强大且易于使用的包,它可以帮助我们自动搜索最佳超参数组合。通过按照上述步骤下载和安装Hyperopt包,我们可以方便地在Python使用它进行超参数优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值