LLMs之HumanEval:HumanEval的简介、安装、使用方法之详细攻略

本文档介绍了HumanEval——一个评估大语言模型解决编程问题能力的数据集。内容涵盖HumanEval的简介、安装步骤(包括创建codex虚拟环境和安装工具)以及如何使用CodeShell通过cmd命令执行HumanEval标准测试,将生成的代码保存到txt文件的实战教程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LLMs之HumanEval:HumanEval的简介、安装、使用方法之详细攻略

目录

HumanEval的简介

HumanEval的安装

1、配置环境:创建一个名为 codex 的虚拟环境,并安装HumanEval工具

2、使用:生成样本→运行评估→检查结果

HumanEval的使用方法

LLMs之CodeShell:利用cmd命令基于HumanEval标准(163个生成代码的prompt)测试CodeShell模型得出模型生成代码并保存到txt文件的实战代码


HumanEval的简介

HumanEval(手写评估集),这是用于评估《Evaluating Large Language Models Trained on Code》论文中描述的HumanEval问题解决数据集的评估工具。

GitHub地址

### DeepSeek 模型在不同任务上的表现 #### 数学与推理任务 DeepSeek-R1 在数学任务中展现出与 OpenAI-o1-1217 相当的性能,这表明其具备强大的逻辑推理能力和解决复杂问题的能力[^1]。这种能力同样体现在 LiveCodeBench 和 Codeforces 这样的编程竞赛平台上,在这些环境中,模型不仅需要编写正确的代码,还需要优化算法效率。 #### 编码算法任务 对于编码算法任务而言,特别是在像 LiveCodeBench 或者 Codeforces 的场景下,DeepSeek-R1 展现出与其他先进模型相似的表现趋势,证明了该模型能够有效应对复杂的编程挑战。值得注意的是,在某些特定类型的工程化编程任务上,比如 Aider 平台的任务,尽管整体水平接近,但竞争对手可能拥有轻微优势;而在 SWEVerified 上则达到了几乎相同的水准。 #### 人类评价下的多语言代码生成准确性 针对 HumanEval-Mul 数据集——一个多语言程序合成评测集合,虽然具体数值未被提及,但从上下文中可以推测出 DeepSeek-R1 应具有较高的准确性和可靠性,尤其是在经过监督微调后的版本里,因为这部分工作专门用于改善输出质量和一致性[^3]。 ```python def evaluate_code_quality(code_snippet, language='python'): """ Evaluates the quality of a given code snippet based on predefined criteria. Args: code_snippet (str): The code to be evaluated. language (str): Programming language used in the code. Returns: dict: Evaluation results including correctness and efficiency scores. """ evaluation_results = { 'correctness': check_correctness(code_snippet), 'efficiency': analyze_efficiency(code_snippet) } return evaluation_results ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值