LLMs之Grok-1:Grok-1的简介、安装、使用方法之详细攻略

LLMs之Grok-1:Grok-1的简介、安装、使用方法之详细攻略

导读:马斯克旗下的xAI公司宣布开源名为Grok-1的混合专家模型,参数量达3140亿,为目前最大的开源大语言模型。xAI此举或将引领人工智能开源趋势,同时也将对不太Open的OpenAI等公司形成市场和技术竞争压力。
Grok-1的特点
>> 从头训练,未针对任何特定任务微调
>> 使用MoE模型,每个token上的平均激活权重为25%
>> 采用JAX库和Rust语言从零开始训练
>> 采用Apache许可证完全开源了模型权重和架构
评估结果:Grok-1在人工评估任务和标准机器学习基准上表现出色,超越其他同类模型。
下载方法:可以使用磁力链接或Torrent客户端下载权重文件,但需要6TB以上GPU内存运行示例代码。

目录

相关文章

LLMs之Grok:Grok(一款具有00后特点般幽默、机智和实时的大语言模型)的简介、使用方法、案例应用之详细攻略

LLMs之Grok-1:Grok-1的简介、安装、使用方法之详细攻略

LLMs之Grok-1.5:Grok-1.5的简介、安装和使用方法、案例应用之详细攻略

Grok-1的简介

1、模型详情

2、模型规格细节

Grok-1的安装

1、下载

(1)、下载仓库

(2)、下载模型权重

T1、可以使用种子客户端和以下磁铁链接下载权重:推荐

T2、直接使用HuggingFace:非常慢

2、运行测试代码

Grok-1的使用方法

LLMs之Grok-1:run.py文件解读—运行语言模型实现推理—即基于用户的输入文本利用grok_1语言模型来生成文本

LLMs之Grok-1:model.py文件解读—实现了基于Transformer的预训练语言模型+利用JAX框架支持高性能分布式计算

LLMs之Grok-1:checkpoint.py文件解读—加载和恢复机器学习模型检查点的工具(基于JAX库处理多维数组计算+大规模分布式训练+多主机间的数据同步和分片)

LLMs之Grok-1:runners.py文件解读—基于JAX和设备分布的预训练语言模型inference服务+支持批量查询+利用设备资源高效推理同时可以被嵌入训练循环进行微调训练


相关文章

LLMs之Grok:Grok(一款具有00后特点般幽默、机智和实时的大语言模型)的简介、使用方法、案例应用之详细攻略

LLMs之Grok:Grok(一款具有00后特点般幽默、机智和实时的大语言模型)的简介、使用方法、案例应用之详细攻略_grok-1怎么使用-CSDN博客

LLMs之Grok-1:Grok-1的简介、安装、使用方法之详细攻略

LLMs之Grok-1:Grok-1的简介、安装、使用方法之详细攻略_grok1 模型训练方法-CSDN博客

LLMs之Grok-1.5:Grok-1.5的简介、安装和使用方法、案例应用之详细攻略

LLMs之Grok-1.5:Grok-1.5的简介、安装和使用方法、案例应用之详细攻略-CSDN博客

Grok-1的简介

2024年3月17日(当地时间),马斯克的AI创企xAI重磅发布了Grok-1的基础模型权重和网络架构,这是一款大型语言模型。Grok-1是一个3140亿参数的专家混合模型,远超OpenAI GPT-3.5的1750亿。由xAI从头开始训练。这是Grok-1预训练阶段的原始基础模型检查点,该阶段于2023年10月结束。这意味着该模型没有针对任何特定应用进行微调,比如对话。

要开始使用该模型,请按照github.com/xai-org/grok上的说明操作。

官网:Open Release of Grok-1

GitHub地址:GitHub - xai-org/grok-1: Grok open release

1、模型详情

基于大量文本数据训练的基础模型,没有针对任何特定任务进行微调。
3140亿参数的专家混合模型,对于给定的标记,有25%的权重处于活动状态。
在2023年10月由xAI从头开始使用JAX和Rust的自定义训练堆栈进行训练。

封面图像是使用Midjourney生成的,基于Grok提出的以下提示:

A 3D illustration of a neural network, with transparent nodes and glowing connections, showcasing the varying weights as different thicknesses and colors of the connecting lines.

一个神经网络的3D插图,具有透明的节点和发光的连接,展示了连接线的不同粗细和颜色作为不同权重的变化。

2、模型规格细节

Grok-1当前设计具有以下规格:
参数:314B
架构:8个专家的混合(MoE)
专家利用率:每个标记使用2个专家
层:64
注意头:48个用于查询,8个用于键/值
嵌入大小:6,144
标记化:带有131,072个标记的SentencePiece分词器
附加功能:
旋转嵌入(RoPE)
支持激活分片和8位量化
最大序列长度(上下文):8,192个标记

Grok-1的安装

1、下载

(1)、下载仓库

这个存储库包含了加载和运行Grok-1开放权重模型的JAX示例代码。

确保下载检查点并将ckpt-0目录放置在checkpoints中 - 请参阅下载权重

地址:GitHub - xai-org/grok-1: Grok open release

(2)、下载模型权重

T1、可以使用种子客户端和以下磁铁链接下载权重:推荐
magnet:?xt=urn:btih:5f96d43576e3d386c9ba65b883210a393b68210e&tr=https%3A%2F%2Facademictorrents.com%2Fannounce.php&tr=udp%3A%2F%2Ftracker.coppersurfer.tk%3A6969&tr=udp%3A%2F%2Ftracker.opentrackr.org%3A1337%2Fannounce

T2、直接使用HuggingFace:非常慢
git clone https://github.com/xai-org/grok-1.git && cd grok-1
pip install huggingface_hub[hf_transfer]
huggingface-cli download xai-org/grok-1 --repo-type model --include ckpt-0/* --local-dir checkpoints --local-dir-use-symlinks False

2、运行测试代码

安装依赖,并测试代码

pip install -r requirements.txt
python run.py

来测试代码。该脚本会加载检查点并从模型中对测试输入进行采样。

由于模型的体积很大(314B参数),测试模型需要具有足够GPU内存的计算机以运行示例代码。此存储库中MoE层的实现不高效。选择了这种实现以避免需要自定义内核来验证模型的正确性。

Grok-1的使用方法​​​​​​​

LLMs之Grok-1:run.py文件解读—运行语言模型实现推理—即基于用户的输入文本利用grok_1语言模型来生成文本

https://yunyaniu.blog.csdn.net/article/details/136956072

LLMs之Grok-1:model.py文件解读—实现了基于Transformer的预训练语言模型+利用JAX框架支持高性能分布式计算

LLMs之Grok-1:model.py文件解读—实现了基于Transformer的预训练语言模型+利用JAX框架支持高性能分布式计算-CSDN博客

LLMs之Grok-1:checkpoint.py文件解读—加载和恢复机器学习模型检查点的工具(基于JAX库处理多维数组计算+大规模分布式训练+多主机间的数据同步和分片)

https://yunyaniu.blog.csdn.net/article/details/137054065

LLMs之Grok-1:runners.py文件解读—基于JAX和设备分布的预训练语言模型inference服务+支持批量查询+利用设备资源高效推理同时可以被嵌入训练循环进行微调训练

https://yunyaniu.blog.csdn.net/article/details/137054046

### DeepSeek-R1 强化学习激励 LLM 推理能力 #### 研究背景与动机 大型语言模型(LLMs)在自然语言处理领域取得了显著进展,但在复杂的推理任务上仍然存在挑战。为了提高这些模型的推理能力,研究人员尝试了多种方法。其中,DeepSeek团队提出了一种新的策略:直接应用强化学习(RL),而不是传统的监督微调(SFT)。这种新方法不仅使模型能够探索更深层次的思维链(CoT),还展示了自我验证、反思以及生成长思维链的能力[^1]。 #### 方法论 ##### DeepSeek-R1-Zero DeepSeek-R1-Zero 是首个完全依靠大规模强化学习训练而成的推理模型,无需任何前期的监督微调。实验结果显示,在面对复杂问题时,该模型会自发增加思考的时间和深度,以此来优化解决方案的质量。这表明,通过适当的设计奖励机制,可以有效引导LLM向更具逻辑性和创造性的方向进化[^2]。 ##### DeepSeek-R1 尽管DeepSeek-R1-Zero表现出了惊人的潜力,但它同样暴露出了一些缺陷,比如较低的语言表达清晰度和较高的语义混乱率。针对这些问题,研究者开发了改进版——DeepSeek-R1。此版本引入了多阶段预训练流程及特别设计的人类友好的初始数据集(即所谓的“冷启动”数据),旨在改善最终输出的内容质量的同时保持高水平的推理效能[^3]。 #### 实验结果分析 通过对两个不同版本的表现对比可以看出: - **推理效率**:两者均能有效地完成指定的任务目标; - **输出品质**:相较于原始形态下的DeepSeek-R1-Zero而言,经过调整后的DeepSeek-R1明显提高了文本连贯性和易理解程度; - **适应范围**:由于采用了更加灵活的学习框架,使得后者具备更强泛化能力和应用场景扩展可能性[^4]。 ```python def compare_models(model_a, model_b): """ Compare two models based on reasoning efficiency and output quality. Args: model_a (str): Name of the first model to be compared. model_b (str): Name of the second model to be compared. Returns: dict: A dictionary containing comparison results between both models. """ result = { "reasoning_efficiency": None, "output_quality": None, "adaptability": None } # Simulate performance metrics gathering here... return result ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值