evo的使用

本文介绍了如何使用evo工具进行轨迹绘制、绝对和相对位姿误差计算,涉及TUM数据集的fr1实例,并提到了ORB_SLAM2精度测评的相关内容。重点展示了如何通过evo命令行操作和结果解读来评估SLAM系统的性能。
摘要由CSDN通过智能技术生成

记录evo的一些命令:

1.画轨迹图

 evo_traj tum FrameTrajectory.txt -p

两个轨迹图画到一起

evo_traj tum FrameTrajectory.txt FrameTrajectory_TUM_Format.txt --ref FrameTrajectory.txt -p

2.绝对位姿误差的计算

evo_ape tum 数据1.txt 数据2txt  -va -p

3.相对位姿误差的计算

evo_rpe tum 数据1.txt 数据2txt  -va -p


运行TUM数据集fr1

1.画轨迹图

--plot表示画图;

--plot_mode xy表示图像投影在xoy平面上,其余可选参数为:xz,yx,yz,zx,zy,xyz;

-s --correct_scale  尺度对齐

-a --align 轨迹对齐

--sync 通过时间戳关联轨迹

evo_traj tum FrameTrajectory.txt groundtruth_fr1.txt --ref groundtruth_fr1.txt -p --plot -s --correct_scale -a --align

 二维 

evo_traj tum FrameTrajectory_fr1_xyz.txt groundtruth_fr1_xyz.txt --ref groundtruth_fr1_xyz.txt -p --plot_mode xy -s --correct_scale -a --align

2.计算绝对位姿误差

evo_ape tum groundtruth_fr1.txt FrameTrajectory.txt -p --plot -s --correct_scale -a --align

均方根误差(RMSE)刻画了两条轨迹的旋转平移误差。RMSE作为算法好坏的一个衡量标准。

3.计算相对位姿误差

evo_rpe tum groundtruth_fr1.txt FrameTrajectory.txt -p --plot -s --correct_scale -a --align

参考文章:

ORB_SLAM2及其他SLAM精度测评_python2 evaluate_ate.py groundtruth.txt cameratraj_小白很废的博客-CSDN博客

Saving camera trajectory to FrameTrajectory.txt ...

trajectory saved!

Saving keyframe trajectory to KeyFrameTrajectory.txt ...

trajectory saved!
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值