ORB-SLAM2稠密点云重建:RGBD室内[0]

众所周知,ORB-SLAM2可以基于特征点的得到稀疏点云:

然而,有时我们需要稠密点云。

不知道怎么做?我会在博客中分别介绍:

1.基于ORB-SLAM2的RGBD稠密点云重建(多用于室内)

2.基于ORB-SLAM2的双目稠密点云重建(多用于室外)

注意!:这里的“重建”并没有改变使用的特征点等行为,对原来的ORB-SLAM2没有进行任何改造,只是利用其输出信息与原始图片进行场景重建而已。

平台:虽然ORB-SLAM2在Linux下使用方便。但我习惯了Win下编程。所以把其输出文件拷贝到了Win下,使用VS2017。

代码:我会在最后一篇单独的博文中提供代码。(因为在开写这篇时还未整理,嘿嘿(●ˇ∀ˇ●))

接下来几篇都会介绍RGBD稠密重建。不介绍原理,仅简单解释代码。

步骤0:

了解流程。作者其实已经在其论文中展示了RGBD稠密重建,并简单说明了原理。github主页上的第二篇论文:ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras。如果你不能打开原文链接,可以直接百度搜,比如此链接

步骤1:

学习高翔博士的几篇博客。我使用他的一起做RGB-D SLAM(1)开始,到(4),即点云拼接的部分,借鉴了其思想与代码。在此非常感谢。

 

ok。第一篇篇幅就到这儿了。下一篇正式开始。

 

 

构建ORB-SLAM3稠密点云地图是机器人和无人车导航中的重要技术,而ROS为这样的任务提供了丰富的支持。以下是在ROS环境下通过ORB-SLAM3构建稠密点云地图的详细步骤: 参考资源链接:[掌握ORB-SLAM3在ROS环境下的稠密点云地图构建](https://wenku.csdn.net/doc/30bi9cgey7) 1. 确保你的系统安装了ROS以及ORB-SLAM3-ROS版本的相关依赖。你可以在《掌握ORB-SLAM3在ROS环境下的稠密点云地图构建》中找到详细的依赖列表和安装指导。 2. 使用git克隆命令下载ORB-SLAM3-ROS代码。通常这可以通过在终端中运行如下命令完成: ``` git clone [git仓库链接] ``` 替换方括号内的内容为你实际的ORB-SLAM3-ROS代码仓库链接。 3. 完成代码克隆后,配置ROS工作空间,将下载的ORB-SLAM3-ROS文件夹移动到你的工作空间src文件夹下,然后运行: ``` catkin_make ``` 这将编译整个项目,包括ORB-SLAM3。 4. 配置环境变量以运行ORB-SLAM3系统。这通常涉及到修改你的.bashrc或.zshrc文件,添加工作空间的setup.bash脚本路径。 5. 运行ORB-SLAM3系统,使用rosrun或roslaunch命令启动节点。根据你的传感器类型(RGB-D相机),你可能需要运行不同的配置文件。例如: ``` rosrun ORB_SLAM3 RGBD path_to_vocabulary path_to_settings ``` 其中path_to_vocabulary是ORB词典文件的路径,path_to_settings是系统配置文件的路径。 6. 启动roscore(如果尚未运行)以及任何必要的rosbags或传感器驱动程序。 7. 一旦ORB-SLAM3开始运行,它将处理来自RGB-D相机的数据,并实时构建和更新稠密点云地图。你可以使用rviz等可视化工具来查看地图的实时构建过程。 通过以上步骤,你可以在ROS环境下使用ORB-SLAM3构建稠密点云地图。如果你希望深入了解ORB-SLAM3的工作原理,或是对SLAM技术有更全面的掌握,建议参考《掌握ORB-SLAM3在ROS环境下的稠密点云地图构建》这一资源,它不仅包括了上述步骤的详细解释,还涵盖了从基础到高级应用的全面知识。 参考资源链接:[掌握ORB-SLAM3在ROS环境下的稠密点云地图构建](https://wenku.csdn.net/doc/30bi9cgey7)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值