自动驾驶算法(七):基于遗传算法的路径规划(下)

目录

1 遗传选择

2 遗传交叉

3 遗传变异

4 结语


1 遗传选择

        我们书接上回,我们完成了种群的初始化,将所有的种群放入了new_pop1中,这个new_pop1是一个(种群大小 * 路径)的一个矩阵,我们来看如何进行遗传选择:

% 循环迭代操作
for i = 1 : max_gen
    % 计算适应度值
    % 计算路径长度
    path_value = cal_path_value(new_pop1, x)
    % 计算顺滑度
    path_smooth = cal_path_smooth(new_pop1, x)
    % 计算适应度
    fit_value = 1 .* path_value .^ -1 + 1 .* path_smooth .^ -1;
    %  这行代码计算了路径长度的均值,并将其赋值给名为 mean_path_value 的数组的第 i 个元素。
    mean_path_value(1, i) = mean(path_value);
    % 这行代码找到了适应度值中的最大值,并将其索引赋值给 m。
    [~, m] = max(fit_value);
    % 这行代码将在适应度值中找到的最大值对应的路径长度赋值给 min_path_value 数组的第 i 个元素。
    min_path_value(1, i) = path_value(1, m);
    
    % 选择操作
    new_pop2 = selection(new_pop1, fit_value);
    % 交叉
    new_pop2 = crossover(new_pop2, pc);
    % 变异 
    new_pop2 = mutation(new_pop2, pm, G, x);
    % 
    new_pop1 = new_pop2;
    
end

        我们这里迭代50次,也就是说50代,我们进行50代的进化。我们首先计算路径长度:

% 计算路径长度函数 传进来的是个体
function [path_value] = cal_path_value(pop, x)
[n, ~] = size(pop);
path_value = zeros(1, n);
for i = 1 : n
    single_pop = pop{i, 1};
    [~, m] = size(single_pop);
    for j = 1 : m - 1
        % 点i所在列 (从左到右编号1.2.3...)
        x_now = mod(single_pop(1, j), x) + 1; 
        % 点i所在行(从上到下编号1,2,3...)
        y_now = fix(single_pop(1, j) / x) + 1;
        % 点i+1所在行、列
        x_next = mod(single_pop(1, j + 1), x) + 1;
        y_next = fix(single_pop(1, j + 1) / x) + 1;
        % 左右上下相连
        if abs(x_now - x_next) + abs(y_now - y_next) == 1
            path_value(1, i) = path_value(1, i) + 1;
        else
            path_value(1, i) = path_value(1, i) + sqrt(2);
        end
    end
end

        我们传进来的是所有的个体,在循环中遍历每一个个体for i = 1 : n,pop{i, 1}  表示从 pop 中提取第 i 行、第 1 列的元素。我们将绝对栅格坐标值转化为栅格坐标求两坐标的距离,如果相连则路径+1如果是斜对角则路径+根号2。最后我们得到了一个(1,n)的数组,保存了每一个路径的代价值。

        我们在来看计算顺滑度:

% 计算顺滑度
function [path_smooth] = cal_path_smooth(pop, x)
[n, ~] = size(pop);
path_smooth = zeros(1, n);
% 遍历所有个体
for i = 1 : n
    single_pop = pop{i, 1};
    [~, m] = size(single_pop);
    % 遍历一个个体的所有点
    for j = 1 : m - 2
        % 计算三个点的坐标 列 行  i i+1 i+2
        x_now = mod(single_pop(1, j), x) + 1; 
        y_now = fix(single_pop(1, j) / x) + 1;
        x_next1 = mod(single_pop(1, j + 1), x) + 1;
        y_next1 = fix(single_pop(1, j + 1) / x) + 1;
        x_next2 = mod(single_pop(1, j + 2), x) + 1;
        y_next2 = fix(single_pop(1, j + 2) / x) + 1;
        % cos A=(b?+c?-a?)/2bc
        b2 = (x_now - x_next1)^2 + (y_now - y_next1)^2;
        c2 = (x_next2 - x_next1)^2 + (y_next2 - y_next1)^2;
        a2 = (x_now - x_next2)^2 + (y_now - y_next2)^2;
        cosa = (c2 + b2 - a2) / (2 * sqrt(b2) *  sqrt(c2));
        % 度数
        angle = acosd(cosa);
        
        if angle < 170 && angle > 91
            path_smooth(1, i) = path_smooth(1, i) + 3;
        elseif angle <= 91 && angle > 46
            path_smooth(1, i) = path_smooth(1, i) + 15;
        elseif angle <= 46
            path_smooth(1, i) = path_smooth(1, i) + 20;
        end
    end
end

        我们遍历每一个个体,计算三个点的夹角,越平滑的话角度越大,我们给予角度大的较小权值。

        我们计算适应度:

        综上所述,越好的路径适应度越大,适应环境也就越强。

        下面计算了路径长度的均值,并将其赋值给名为 mean_path_value 的数组的第 i 个元素。又找到了适应度值中的最大值,并将其索引赋值给 m。又将在适应度值中找到的最大值对应的路径长度赋值给 min_path_value 数组的第 i 个元素。

    % 计算适应度
    fit_value = 1 .* path_value .^ -1 + 1 .* path_smooth .^ -1;
    %  这行代码计算了路径长度的均值,并将其赋值给名为 mean_path_value 的数组的第 i 个元素。
    mean_path_value(1, i) = mean(path_value);
    % 这行代码找到了适应度值中的最大值,并将其索引赋值给 m。
    [~, m] = max(fit_value);
    % 这行代码将在适应度值中找到的最大值对应的路径长度赋值给 min_path_value 数组的第 i 个元素。
    min_path_value(1, i) = path_value(1, m);

        到此为止,我们的准备工作就完成了,我们进入选择工作:

% 选择操作
new_pop2 = selection(new_pop1, fit_value);

        我们看下选择操作的代码:

% 用轮盘赌法选择新的个体
% 输入变量 pop元素种群 fitvalue适应度值
% 输出变量 newpop选择以后的元素种群
function [new_pop] = selection(pop, fit_value)
% 构造轮盘
% px存放有多少个个体
[px, ~] = size(pop);
% 这行代码计算了适应度值的总和,将结果赋值给变量 total_fit。
total_fit = sum(fit_value);
%  这行代码计算了每个个体的适应度相对于总适应度的比例,将结果存储在向量 p_fit_value 中。相当于一个大的转盘。每个部分占比多少
p_fit_value = fit_value / total_fit;
% 这行代码对适应度比例进行累积求和,得到了一个逐步递增的概率分布。 0.2 0.5 0.8 1.0
p_fit_value = cumsum(p_fit_value);   
% 随机数从小到大排列 生成了若px=20 个0-1的列向量
ms = sort(rand(px, 1));
fitin = 1;
newin = 1;
% 举个例子 px = 4 ms = 0.1 0.2 0.3 0.4   p_fit_value =  0.3 0.6 0.65 0.75
% 好像没有做选择呢??
% D1 1<=4 ms(1)=0.1<p_fit_value(1)0.3 new_pop[1,1]=pop[1,1] newin=2
% D2 2<=4 ms(2)=0.2<p_fit_value(1)0.3 new_pop[2,1]=pop[1,1] newin=3
% D3 3<=4 ms(3)=0.3!=p_fit_value(1)0.3 fit_in = 2
% D4 3<=4 ms(3)=0.3<=p_fit_value(2)0.6 new_pop[3,1]=pop[2,1] newin=4
% D5 4<=4 ms(4)=0.4<=p_fit_value(2)0.6 new_pop[4,1]=pop[2,1] newin=4
while newin <= px
    if(ms(newin)) < p_fit_value(fitin)
        % 判断哪一次落在哪个区间里面
        new_pop{newin, 1} = pop{fitin, 1};
        newin = newin+1;
    else
        fitin = fitin+1;
    end
end

        输入变量:pop种群,fitvalue为种群的每个个体适应度值的列表。上面我也用具体例子解释了,选择类似轮盘赌的方式,到这为止,我们从种群出选择出了new_pop作为自然选择的结果,其他种群全部抛弃。

2 遗传交叉

function [new_pop] = crossover(pop, pc)
[px,~] = size(pop);
% 判断路经点是奇数倍还是偶数倍 如果是奇数的话那么最后我们就不做处理了
parity = mod(px, 2);
new_pop = {};
% 这是一个循环,它会以步长为2从1开始遍历到 px-1,目的是处理两两配对的个体。
for i = 1:2:px-1
        singal_now_pop = pop{i, 1};
        singal_next_pop = pop{i+1, 1};
        % 这行代码使用 ismember 函数找出 singal_now_pop 中与 singal_next_pop 相同的元素,并返回一个逻辑数组 lia 和对应的索引 lib。
        [lia, lib] = ismember(singal_now_pop, singal_next_pop);
        % 这行代码找出逻辑数组 lia 中为 1 的元素的索引,将结果存储在向量 n 中。
        [~, n] = find(lia == 1);
        % 这行代码获取向量 n 的长度(即匹配的元素个数),并将结果存储在变量 m 中。
        [~, m] = size(n);
    % 这是一个条件判断,它首先检查随机数是否小于交叉概率 pc,然后再检查匹配的元素个数是否大于等于3
    if (rand < pc) && (m >= 3)
        % 如果上述条件成立,这行代码会生成一个介于2和m-1之间的随机整数 r。
        r = round(rand(1,1)*(m-3)) +2;
        % 这两行代码分别得到要进行交叉的位置索引
        crossover_index1 = n(1, r);
        crossover_index2 = lib(crossover_index1);
        % 这两行代码进行了交叉操作,生成了新的个体。
        new_pop{i, 1} = [singal_now_pop(1:crossover_index1), singal_next_pop(crossover_index2+1:end)];
        new_pop{i+1, 1} = [singal_next_pop(1:crossover_index2), singal_now_pop(crossover_index1+1:end)];
        
    else
        % 如果交叉条件不满足,保持原个体不变。
        new_pop{i, 1} =singal_now_pop;
        new_pop{i+1, 1} = singal_next_pop;
    end
% 如果个体数量为奇数,将最后一个个体直接放入新一代。
if parity == 1
    new_pop{px, 1} = pop{px, 1};
end
end

        我们调用的函数是:

    new_pop2 = crossover(new_pop2, pc);

        这里的pc = 0.8代表的是交叉处理频率,也就是我们有80%的几率进行交叉操作,内部是一个循环,它会以步长为2从1开始遍历到种群数量-1,目的是处理两两配对处理基因重组的个体。

        我们先取出第一个种群和第二个种群,使用 ismember 函数找出 singal_now_pop 中与 singal_next_pop 相同的元素,并返回一个逻辑数组 lia 和对应的索引 lib。找出逻辑数组 lia 中为 1 的元素的索引,将结果存储在向量 n 中。获取向量 n 的长度(即匹配的元素个数),并将结果存储在变量 m 中。

        如果路径的共同元素数量大于3且要进行遗传交叉操作我们将随机选取第一个种群的基因打乱拼接到第二个种群上,图示如下:

        到这为止,我们已经对两两种群进行了基因重组。

3 遗传变异

% 变异频率 栅格地图 20
function [new_pop] = mutation(pop, pm, G, x)
% 获取路径长度
[px, ~] = size(pop);
new_pop = {};
% 它将会迭代处理种群中的每一个个体
for i = 1:px
    % 初始化最大迭代次数
    max_iteration = 0;
    % 从种群 pop 中取出第 i 个个体,并将其赋值给变量 single_new_pop。
    single_new_pop = pop{i, 1};
    % 这行代码获取了 single_new_pop 的维度信息,并将列数保存在变量 m 中。
    [~, m] = size(single_new_pop);
    % single_new_pop_slice初始化
    single_new_pop_slice = [];
    % 这是一个条件语句,它检查一个随机数是否小于变异率 pm。
    if(rand < pm)
        while isempty(single_new_pop_slice)
            % 生成两个随机整数 mpoint,这两个整数位于 2 到 m-2 之间。
            mpoint = sort(round(rand(1,2)*(m-3)) + [2 2]);
            % 从 single_new_pop 中取出索引为 mpoint(1,1)-1 和 mpoint(1,2)+1 的两个元素,构成 single_new_pop_slice。
            single_new_pop_slice = [single_new_pop(mpoint(1, 1)-1) single_new_pop(mpoint(1, 2)+1)];
            % 使路径连续
            single_new_pop_slice = generate_continuous_path(single_new_pop_slice, G, x);
            if max_iteration >= 100000
                break
            end
        end
        % 不变异了
        if max_iteration >= 100000
            new_pop{i, 1} = pop{i, 1};
        % 如果未达到最大迭代次数,将变异后的个体重新组合,并保存到 new_pop 中。    
        else
            new_pop{i, 1} = [single_new_pop(1, 1:mpoint(1, 1)-1), single_new_pop_slice(2:end-1), single_new_pop(1, mpoint(1, 2)+1:m)];
        end
        % 将 single_new_pop_slice 重置为空,准备进行下一次循环。
        single_new_pop_slice = [];
    else
        % 直接将未发生变异的个体复制到 new_pop 中。
        new_pop{i, 1} = pop{i, 1};
    end
end

        这里的调用函数如下:

new_pop2 = mutation(new_pop2, pm, G, x);

        是我们在交叉里面得到的种群,pm是变异比率,我们设置为0.2。这里是对种群中的每一个个体进行变异的,对其随机两个点进行拼接,若拼接成功则变异成功。

4 结语

        最后我们不断迭代出了最优路径:

  • 接下来的代码段是用来将最优路径的节点坐标转换成具体的坐标值。它通过取模和整除操作来计算 x 和 y 的坐标值。

  • 最后一段代码用红色绘制了最优路径在图形上。

min_path_value(1, end)
[~, min_index] = max(fit_value);
min_path = new_pop1{min_index, 1};
figure(2)
hold on;
title('hah'); 
xlabel('x'); 
ylabel('y');
DrawMap(G);
[~, min_path_num] = size(min_path);
for i = 1:min_path_num
    x_min_path(1, i) = mod(min_path(1, i), x) + 1; 
    y_min_path(1, i) = fix(min_path(1, i) / x) + 1;
end
hold on;
plot(x_min_path, y_min_path, 'r')

        最后看一下效果吧~

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 基于改进遗传算法路径规划MATLAB实现是一种用于寻找最优路径算法。在这个问题中,我们需要找到从起点到终点的最短路径,同时避免障碍物的干扰。 首先,我们定义问题的目标函数。这个函数可以根据路径的长度和避免障碍物的程度来评估一个路径的好坏。我们可以采用费马定理或欧几里得距离作为路径长度的度量,同时通过计算路径上的障碍物数量或避免障碍物的距离来度量避免障碍物的程度。 然后,我们需要定义遗传算法的基本操作。遗传算法主要包括初始化种群、选择、交叉和变异。在路径规划问题中,我们可以将每个个体表示为一条路径,通过染色体编码的方式存储路径的节点信息。初始化种群时,我们随机生成一些路径,选择操作则根据问题的目标函数对路径进行评估,并选择出适应度最高的个体。交叉操作将从选择的个体中选择两个进行交叉,通过染色体的交换产生新的个体。变异操作则对某个个体的染色体进行变异,例如随机交换某两个节点。 接下来,我们需要对遗传算法进行改进以提高求解结果的质量和效率。一种改进方法是引入局部搜索策略,例如爬山算法。爬山算法可以在遗传算法的某个迭代中,对于某个个体的邻域进行搜索,以找到更优的个体。另一种改进方法是通过改变遗传算法的参数,例如交叉率和变异率,来获得更好的求解结果。 最后,在MATLAB中实现这个改进的遗传算法路径规划方法。可以通过编写适应度函数、初始化种群函数、选择函数、交叉函数和变异函数等来实现算法的各个部分。然后,利用MATLAB的优化工具箱中的遗传算法函数进行算法的迭代和求解。 通过这种基于改进遗传算法路径规划MATLAB实现,我们可以找到起点到终点的最短路径,并且能够避免障碍物的干扰。这种方法具有广泛的应用前景,可以在无人驾驶、自动导航、物流配送等领域中得到应用。 ### 回答2: 基于改进遗传算法路径规划是一种求解最短路径或最优路径算法。它通过模拟自然界中的遗传与进化的过程,利用遗传算法的优势来寻找最优解。本文使用MATLAB实现了该算法,并进行了改进。 首先,在路径规划问题中,我们需要定义适应度函数来评价每条路径的优劣。适应度函数可以根据实际问题的不同进行设计。例如,可以将某个路径的总长度作为适应度函数,使得通过遗传算法搜索出的路径趋向于最短路径。 其次,我们需要设计遗传算法的基本流程。经典的遗传算法包括选择、交叉、变异等操作。在该改进算法中,我们引入了一种新的选择策略,即“锦标赛选择”。在锦标赛选择中,我们先从种群中随机选择几条路径,然后从中选择适应度最高的路径作为优秀个体。这样,可以增加进化过程中的多样性,提高算法的收敛速度。 另外,我们还对交叉和变异操作进行了一定的改进。在交叉操作中,我们采用了部分映射交叉算子,即只对路径中的某一段进行交叉操作,而不是对整个路径进行交叉。这样可以保留原始路径中的一些有用信息。在变异操作中,我们采用了插入变异算子,即将某个节点插入到路径中的任意位置。这样可以增加路径的多样性和局部搜索能力。 最后,我们使用MATLAB编写代码来实现改进遗传算法路径规划。我们首先初始化种群,并计算每条路径的适应度。然后,根据适应度进行选择、交叉和变异操作,生成新一代的种群。重复进行选择、交叉和变异操作,直到达到预定的停止条件。 通过使用改进的遗传算法路径规划实现,我们可以得到一条近似最优的路径。该算法在实际问题中具有广泛的应用前景,如无人机飞行路径规划、机器人路径规划等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

APS2023

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值