一、本文介绍
本文记录的是基于MobileNet V3的YOLOv11目标检测轻量化改进方法研究。MobileNet V3
的模型结构是通过网络搜索得来的,其中的基础模块结合了MobileNet V1
的深度可分离卷积、MobileNet V2
的线性瓶颈和倒置残差结构以及MnasNet
中基于挤压和激励的轻量级注意力模块,使模型在性能、效率和灵活性方面都具有显著的优势。
模型 | 参数量 | 计算量 | 推理速度 |
---|---|---|---|
YOLOv11m | 20.0M | 67.6GFLOPs | 3.5ms |
Improved | 11.6M | 11.5GFLOPs | 2ms |
专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进