【YOLOv8/v9/v10/v11、RT-DETR改进合集】详解AIFI : 基于Transformer的尺度内特征交互,在降低计算成本的同时提高模型的性能

一、本文介绍

本文记录的是基于AIFI模块的YOLOv8YOLOv9YOLOv10YOLOv11目标检测改进方法研究AIFIRT-DETR中高效混合编码器的一部分,利用其改进模型,使网络在深层能够更好的捕捉到概念实体之间的联系,并有助于后续模块对对象进行定位和识别。


二、AIFI设计原理

RT-DETR模型结构:

在这里插入图片描述

AIFI(Attention-based Intra-scale Feature Interaction)模块的相关信息如下:

2.1、设计原理

AIFIRT-DETR中高效混合编码器的一部分。为了克服多尺度Transformer编码器中存在的计算瓶颈,RT-DETR对编码器结构进行了重新思考。

由于从低级特征中提取出的高级特征包含了关于对象的丰富语义信息,对级联的多尺度特征进行特征交互是冗余的。因此,AIFI基于此设计,通过使用单尺度Transformer编码器仅在S5特征层上进行尺度内交互,进一步降低了计算成本

对高级特征应用自注意力操作,能够捕捉到概念实体之间的联系,这有助于后续模块对对象进行定位和识别。而低级特征由于缺乏语义概念,且与高级特征交互存在重复和混淆的风险,因此其尺度内交互是不必要的。

2.2、优势

与基准模型相比,AIFI不仅显著降低了延迟(快35%),而且提高了准确性(AP高0.4%)。

论文:https://arxiv.org/abs/2304.08069

三、AIFI模块的实现代码

四、修改步骤

模块完整介绍个人总结实现代码模块改进yaml配置、以及详细添加步骤请参考对应链接:

YOLOv8:
详细步骤:YOLOv8改进策略【SPPF】| AIFI : 基于Transformer的尺度内特征交互,在降低计算成本的同时提高模型的性能

改进合集:YOLOv8全方位改进目录一览


YOLOv9:

详细步骤:YOLOv9改进策略【SPPF】| AIFI : 基于Transformer的尺度内特征交互,在降低计算成本的同时提高模型的性能

改进合集:YOLOv9全方位改进目录一览


YOLOv10:
详细步骤:YOLOv10改进策略【SPPF】| AIFI : 基于Transformer的尺度内特征交互,在降低计算成本的同时提高模型的性能

改进合集:YOLOv10全方位改进目录一览


YOLOv11:
详细步骤:YOLOv11改进策略【SPPF】| AIFI : 基于Transformer的尺度内特征交互,在降低计算成本的同时提高模型的性能

改进合集:YOLOv11全方位改进目录一览


RT-DETR:

改进合集:RT-DETR全方位改进目录一览

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值