一、本文介绍
本文记录的是基于LSKNet的RT-DETR目标检测改进方法研究。LSKNet
利用大核卷积获取上下文信息进行辅助,使模型能够产生具有各种大感受野的多个特征的同时,动态地根据输入调整模型的行为,使网络更好地适应图像中不同物体的检测需求。本文在RT-DETR的基础上配置了原论文中LSKNET_T
、LSKNET_S
两种模型,以满足不同的需求。
专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进