题目:SPDET: Edge-Aware Self-Supervised Panoramic Depth Estimation Transformer With Spherical Geometry
边缘感知自监督全景深度估计Transformer与球面几何
作者:Chuanqing Zhuang; Zhengda Lu; Yiqun Wang; Jun Xiao; Ying Wang
源码链接: https://github.com/zcq15/SPDET
摘要
全景深度估计已成为3D重建技术中的一个热点话题,因为它提供了全方位的空间视场。然而,由于缺乏全景RGB-D相机,全景RGB-D数据集难以获得,这限制了监督全景深度估计的实用性。基于RGB立体图像对的自监督学习有潜力克服这一限制,因为它对数据集的依赖性较低。在这项工作中,我们提出了SPDET,这是一个结合了变换器和球面几何特征的边缘感知自监督全景深度估计网络。具体来说,我们首先引入全景几何特征来构建我们的全景变换器,并重建高质量的深度图。此外,我们引入了预过滤的深度