自动驾驶TPM技术杂谈 ———— 高精度地图

概述

 汽车定位技术是让汽车知道自身确切位置的技术。准确可靠的汽车位置和姿态等定位信息是实现自动驾驶汽车导航功能的前提和基础。自动驾驶汽车要求定位系统能准确、实时感知自身在全局环境中的相对位置且定位精度达到厘米级,同时对定位技术的可靠性和安全提出了更高的要求。采用普通导航地图、卫星地位及基站定位等现有的定位方案无法满足自动驾驶对于定位技术的要求。因此,多种感知技术与定位技术的融合定位成为了自动驾驶定位技术的发展趋势。
 高精度地图是用于自动驾驶的专用地图,由含有语义信息的车道模型、道路部件、道路属性等矢量信息,以及用于多传感器定位的特征图层构成。在高精地图的辅助下,自车更容易判断自身位置、可行驶区域、目标类型、行驶方向、前车相对距离、感知红绿灯状态以及形式车道等信息。另外,还能通过超视距的感知能力,辅助汽车预先感知坡度、曲率、航向等路面复杂信息,再结合路径规划算法,让汽车做出正确决策。
 汽车定位技术的方案越来越多,由不同类型传感器组成的定位系统也变化多样,按照技术原理的区分来看,可将汽车定位技术分为三种:
   1. 基于信号的定位:采用飞行时间测距法(Time of Flight,TOF)获取汽车与卫星间的距离,然后使用三球定位远离得到汽车空间的绝对位置。典型的代表是GNSS、GPS、北斗等。
   2. 轨迹递推(Dead Reckoning,DR),依靠加速计、陀螺仪、里程计等,根据上一刻汽车的位置和航向递推出当前时刻汽车的位置和航向。
   3. 地图匹配(Map Matching,MP),用激光雷达或摄像头采集到的数据特征匹配高精度地图中存储的特征,得到实时的汽车位姿。
 无线通信辅助汽车定位借助的是V2X车联网技术,V2X技术可以使车车和车路更好的进行协同,并可以通过相应的技术优化,提升自动驾驶定位精度,改善通行效率,保障交通安全。另外,在卫星定位无法正常使用的特定区域(如地下停车场),可采用WIFI、RFID、超宽带、可见光等专用短程通信技术实现汽车室内定位。

高精度地图

 高精度地图也成为高分辨率地图(High Definition Map,HD Map)或者高度自动驾驶地图(Highly Automated Map,HAD Map)。高精度地图与普通导航地图不同,主要面向自动驾驶汽车,通过一套特有的定位导航系统,协助自动驾驶系统解决性能限制问题,拓展传感器检测局限。

分层架构

 高精度地图是比普通导航地图精度更高、数据维度更广的地图,其精度高体现在地图精确度可达到厘米级,其更广体现在地图数据除道路信息之外还包括与交通相关的周围静态信息。高精度地图主要由静态数据和动态数据构成。静态数据包括道路层、车道层、交通设施层等图层信息;动态数据包括实时路况层、交通事件层等图层信息。架构如下图所示。
在这里插入图片描述
 高精度地图作为普通导航地图的延伸,在精度、使用对象、时效性及数据维度等方面与普通导航地图存在如下区别:
   1. 精度:普通导航地图为米级,高精度地图为厘米级。
   2. 使用对象:普通导航面向驾驶员,高精度地图面向控制器系统。
   3. 时效性:对于静态数据,普通导航更新要求一般以月或者季为周期,高精度地图一般为周或者天为周期;对于动态数据,普通导航不做要求,高精度地图要求车道级路况活交通事件等信息实时更新。
   4. 数据维度:普通导航只记录道路级别的数据,如道路等级、几何形状、坡度、曲率、方向等,高精度地图在普通导航的基础上不仅增加了车道及车道线类型、宽度等属性,还有护栏、路沿、交通标志牌、信号灯和路灯等详细信息。

价值体现

 高精度地图作为自动驾驶的稀缺资源和必备构件,能够满足车辆在行驶过程中地图精确计算匹配、实时路径规划导航、辅助环境感知、驾驶决策辅助和智能汽车控制的需求,在每个环境发挥着重要作用。其主要功能如下:
   1. 辅助环境感知:高精度地图可以对传感器无法探测或者探测精度不够的部分进行补充,实现实时状况的监测及外部信息的反馈,进而获取当前位置的交通状况。
   2. 辅助定位:在汽车行驶过程中,利用地图匹配可精确定位汽车在车道上的具体位置,从而提高汽车定位的精度。
   3. 辅助路径规划:高精度地图的路径规划导航能力提高到了车道级,可保证车辆尽可能行驶在车道中心;在人行横道等低速区域,高精度地图可使汽车能够提前查看并预先减速。对于车辆周围的障碍物,可以帮助车辆缩小路径选择范围。
   4. 辅助决策和控制:高精度地图为车辆提供了精确的预判信息,具有提前辅助其控制系统选择合适的行驶策略,有利于减少车载计算压力和突破计算性能瓶颈。

关键技术

道路元素图像处理

 高精度地图的制作需要运用图像处理技术将道路上的各种道路元素进行识别,并以此进行语义标注,如车道线检测、众包图像数据采集等。通常,道路元素包括如交通标志牌、红绿灯、车道线和隔离带等。在进行识别前,由于环境影响可能引入噪声或使图像失真。因此,需要对图像进行降噪和增强等提高图像质量的预处理。然后,利用这些道路元素的颜色、位置和大小等先验知识提取其特征,再基于这些特征进行识别和分类,完成语义的标注。流程大致如下:
在这里插入图片描述
   1. 图像采集:通过工具采集真实道路环境下的图像,生成图像集;
   2. 图像预处理:对数据集中的图像进行扩充,同时对图像进行标注工作,便于后期的深度学习训练模型使用;
   3. 图像分割:将图像分割成若干个特定的、具有独特性质的区域并提出感兴趣目标的过程;
   4. 边缘检测:找出图像中亮度变化剧烈的像素点构成的集合;
   5. 图像细化:将图像的线条从多像素宽度减少到单位像素宽度的过程,通过减少图像的像素来达到压缩图像的目的;
   6. 特征提取:将数据集中的每一幅图像输入到深度学习的模型中,在特定的卷积层中提取图像的深度学习特征,便于图像识别工作;
   7. 特征参数计算:参数计算对卷积神经网络至关重要,不同步长、填充方式、卷积核大小、池化层策略等都决定最终输出模型与参数、计算复杂度等;
   8. 图象识别:将任意一幅待识别的图像输入到深度学习训练模型中,提取样本的深度学习特征并对图像进行识别,判断该图像中的物体属于哪个类别并显示识别物体的准确率。
 高精度地图的生产过程,对道路元素的识别要求有很高的执行效率,同时又要求保证识别的准确率。为了做到两者兼顾,目前主流的方式会采用基于深度学习的图像识别算法(常见的算法有:Fast R-CNN、Faster-RCNN、R-FCN、OHEM、Mask R-CNN、SqueezeNet、YOLO V3等)进行车道线、地面标志线和交通标识牌的识别工作。

激光点云处理

 在高精地图的制作过程中,激光点云的处理通常做法是:利用激光雷达扫描获取激光点云数据,重建三维的道路环境,并利用重建好的三维环境进行道路要素特征的提取和识别,准确地反应道路环境并描述其道路环境特征,得到高精度点云地图。同时,处理后的激光点云数据能够与图像数据进行映射或融合处理,得到信息更加丰富的彩色激光点云地图,为人工检测与修订提供充分的数据基础。目前,各高精地图制作厂商的制作方法和流程不尽相同,所以这里只能概括说一下激光点云处理算法。

点云特征提取

 激光雷达获取的原始数据以激光点云文件形式进行存储。一般来说,点云文件中只包含物体表面的离散点集、法向量、颜色或标签等基本信息,缺少物体的曲面、体积以及各顶点之间的几何拓扑信息。此外,点云文件中存在噪声,具有散乱、重复以及量大的特点。为了实现更好的描述道路环境的几何特征,需要对点集进行特征提取。提取得到的点特征所表示的特征向量具有平移旋转不变性、抗密度干扰性以及抗噪声稳定性等特点。其中,抗密度干扰性表示一个局部表面小块的采样密度的变化不会影响特征向量值,抗噪声稳定性表示在数据有轻微噪声的条件下,点特征表示的特征向量不会发生较大的变化。激光点云特征按照空间尺度分为局部特征和全局特征两种类型。局部特征一般包括法线、点特征直方图(Point Feature Histogram,PFH)、快速点特征直方图(Fast Point Feature Histogram,FPFH)、方位直方图特征(Signature of Histogram of Orientation,SHOT)和3D形状描述子等几何形状特征描述。全局特征一般为拓扑特征描述,这类特征描述一般难以捕捉细节的细微变化且对物体遮挡敏感。

点云法向量

 三维扫描获取的初始采样点集只记录了各采样点的空间三维坐标,而坐标之间不存在任何联系且缺少特征描述。在激光点云处理技术中,法向量作为激光点云数据重要的局部特征,能够对散乱激光点云的局部进行有效的描述并为其他激光点云处理技术提供支撑。SHOT以及旋转图等许多特征描述子都需要利用激光点云法向量进行计算提取。此外,激光点云的众多分割、聚类、重建等算法中都需要法向量作为基础进行计算。点云法向量的计算方法有很多种,通常使用的是两种方案:
   1. 使用曲面重建技术,从获取的点云数据集中得到采样点对应的曲面,然后从曲面模型中计算表面法向量;
   2. 直接对点云数据集进行法向量估计。

点云配准

 在激光点云数据采集过程中,由于采集角度有限,可能需要从道路的多个方向进行多次采集,以保证采集数据的完整性和可靠性。此外,由于在采集过程中,汽车处于运动状态,因此采集到的点云数据可能存在误差,进而不能准确描述道路的三维环境。因此需要点云配准技术将各个视角下采集到的含有误差的激光点云数据通过旋转平移,消除误差并统一到同一坐标系下,还原道路的三维环境。配准的算法繁多,主要分为粗配准和精配准两种。
   1. 粗配准:适用于两片激光点云初始位置偏差较大的情况下快速取得两片点云的转换关系,输出精度不高。常用的粗配准算法包括利用点特征直方图和快速点特征直方图的局部特征描述法、采样一致性初始配准散发(Sample Consensus-Initial Alignment,SAC-IA)以及正态分布转换(Normal Dustribution Transform,NDT)等。
   2. 精配准:适用于在初始位置偏差较小的情况下对两片激光点云的坐标进行精确的计算,生成用于配准的旋转矩阵和平移向量,消除不同坐标下的激光点云误差。在精配准算法中,应用最为广泛的是迭代最近点(Iterative Closest Point,ICP)算法。

点云分割

 在高精度地图制作过程中,为了能够将灯杆、标志牌和路沿等交通道路元素从大量杂乱无序的激光点云中识别出来,通常需要根据激光点云表现出的几何形状、特征等方面进行有效分割,提取物体的激光点云。接下来使用算法进行分类和识别,并对道路元素添加其语义信息。点云分割算法种类繁多,如随机采样一致(Random Sample Consensus,RANSAC)、最小分割、区域增长等常见分割算法,还有3DMV、PointNet及其改进版PointNet++等基于深度学习网络的语义分割与识别算法。

同步定位与地图构建

 作为不依赖GNSS信号的技术,同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)可在这些特殊场景下辅助开展工作。SLAM最早应用在机器人领域,指机器人在位置环境的未知地点出发,在运动过程中通过观测到的环境特征定位自身位置和姿态,再根据自身位置构建周围环境的地图,从而达到同时定位和地图构建的目的。在进行定位和建图时,SLAM主要借助传感器来获取原

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小趴菜_自动驾驶搬砖人

谢谢大爷赏饭吃

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值