分割大模型论文阅读——Convolution Meets LORA: Parameter Efficient Finetuning for Segment Anything Model

本文介绍了Conv-LoRA,一种新的参数高效微调(PEFT)方法,用于改善Segment Anything Model(SAM)在图像分割任务中的性能。Conv-LoRA通过结合卷积运算和动态选择特征尺度的混合专家(MoE)概念,增强了SAM的局部先验和高级语义学习能力。实验表明,Conv-LoRA在不同领域的语义分割任务中优于其他PEFT技术,包括自然图像、农业、遥感和医学图像。此外,研究发现SAM的预训练限制了其捕获高级图像语义信息的能力,而Conv-LoRA有助于解决这一问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

期刊分析

期刊名: ICLR 2024
期刊信息: 顶会
代码: https://github.com/autogluon/autogluon/tree/master/examples/automm/Conv-LoRA
在这里插入图片描述

摘要

Segment Anything Model (SAM) 是图像分割的基础框架。虽然它在典型场景中表现出显着的零样本泛化能力,但当应用于医学图像和遥感等专业领域时,其优势就会减弱。为了解决这一限制,本文引入了 Conv-LoRA,这是一种简单而有效的参数高效微调方法。 通过将超轻量级卷积参数集成到低秩适应 (LoRA) 中,Conv-LoRA 可以将与图像相关的归纳偏差注入到普通 ViT 编码器中,进一步强化 SAM 的局部先验假设。 值得注意的

### 大模型在语义分割中的技术实现与应用场景 #### 技术实现 大模型在语义分割中的应用主要依赖于先进的架构设计以及强大的计算能力。例如,基于 Transformer 的 Segmentation 方法已经在语义分割领域取得了显著进展。Segmenter 是一种典型的基于视觉 Transformer (Vision Transformer, ViT) 的算法,它利用 attention 机制捕获长距离依赖关系,从而提升对复杂场景的理解能力[^3]。这种特性对于需要高精度的语义分割任务尤为重要。 此外,MaskFormer 将 Transformer 和卷积神经网络相结合,能够同时生成实例分割和语义分割的结果。这种方法不仅提高了分割效率,还增强了模型对不同类别对象边界的敏感度。这些技术实现了从像素级到全局上下文理解的跨越,进一步提升了语义分割的效果。 为了应对多样化的文档图像处理需求,现代大模型还可以通过预训练的方式获取丰富的先验知识,并将其迁移到具体的语义分割任务上。这得益于大规模无监督学习策略的支持,使模型能够在少量标注样本的情况下完成高质量的任务执行[^1]。 #### 应用场景 语义分割的应用范围广泛,涵盖了多个行业和技术领域。以下是几个典型的应用案例: 1. **自动驾驶** 自动驾驶车辆需要精准感知周围环境,而语义分割正是解决此问题的关键工具之一。通过对道路、行人、交通标志等元素进行细致划分,可以帮助系统做出更加安全可靠的决策[^2]。 2. **医疗影像分析** 在医学诊断中,医生经常借助计算机辅助手段快速定位病变区域。采用高性能的大规模深度学习框架可以有效提高检测准确性并缩短诊疗时间。 3. **遥感数据分析** 利用卫星拍摄的地表图片开展土地覆盖类型监测等工作时,也需要依靠高效的自动化解决方案来进行大面积的数据整理工作。此时引入具备强大泛化能力的大模型无疑会带来事半功倍的效果。 4. **工业质检** 对产品表面缺陷实施全面筛查属于制造业质量控制环节的重要组成部分。凭借先进的人工智能技术支持,企业可大幅降低人工成本的同时保持高标准的产品品质。 ```python import torch from transformers import SegformerForSemanticSegmentation model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512") def perform_segmentation(image_tensor): outputs = model(pixel_values=image_tensor) logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4) return logits.argmax(dim=1).cpu().numpy() # 返回预测标签图 ``` 上述代码片段展示了如何加载一个经过微调后的 SegFormer 模型以执行语义分割操作。该模型适用于各种复杂的现实世界场景,体现了当前技术水平下的卓越表现力。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Philo`

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值