Convolution Meets LORA
期刊分析
期刊名:
ICLR 2024
期刊信息:
顶会
代码:
https://github.com/autogluon/autogluon/tree/master/examples/automm/Conv-LoRA
摘要
Segment Anything Model (SAM) 是图像分割的基础框架。虽然它在典型场景中表现出显着的零样本泛化能力,但当应用于医学图像和遥感等专业领域时,其优势就会减弱。为了解决这一限制,本文引入了 Conv-LoRA,这是一种简单而有效的参数高效微调方法。 通过将超轻量级卷积参数集成到低秩适应 (LoRA) 中,Conv-LoRA 可以将与图像相关的归纳偏差注入到普通 ViT 编码器中,进一步强化 SAM 的局部先验假设。
值得注意的