微分几何 Class 2 欧氏空间

欧氏空间

在上完上一节课之后,我才意识到,欧氏空间和欧氏向量空间原来不是同一个东西。
但是在介绍欧氏空间之前,我们首先来了解一下什么叫做仿射空间


Part One 仿射空间

定义:仿射空间

V V V是n维向量空间, A A A是一个非空集合, A A A中元素称为点。
如果存在映射 G : A × A → V G:A\times A\rightarrow V G:A×AV,它把 A A A中任意一对有序的点 P , Q P,Q P,Q映射为 V V V中的一个向量 P Q → ∈ V \overrightarrow{PQ}\in V PQ V,且满足以下条件:

  1. P P → = 0 ⃗ , ∀ P ∈ A \overrightarrow{PP}=\vec{0},\forall P\in A PP =0 ,PA;
  2. ∀ P ∈ A , ∀ v ∈ V \forall P\in A,\forall v\in V PA,vV,存在唯一的一点 Q ∈ A Q\in A QA,使得 P Q → = v \overrightarrow{PQ}=v PQ =v;
  3. ∀ P , Q , S ∈ A \forall P,Q,S\in A P,Q,SA,成立恒等式 P Q → + Q S → = P S → \overrightarrow{PQ}+\overrightarrow{QS}=\overrightarrow{PS} PQ +QS =PS

则称 A A A是n维仿射空间,且称 V V V是与仿射空间 A A A伴随的向量空间

注:

  1. 注意映射 → \rightarrow 的定义域 A × A A\times A A×A和值域 V V V。虽然 P , Q P,Q P,Q都是集合 A A A中的点,但是作为值的 P Q → \overrightarrow{PQ} PQ 是向量空间 V V V中的向量元素,不是 A A A中的东西。
  2. A A A是点的空间, V V V是向量的空间。区别在于是否有固定的坐标系。

但是我可以通过映射 G G G A A A中建立类似于 V V V中的坐标系。
首先我取 A A A中一点 O O O,并称其为空间 A A A原点,对 A A A中其余任意一点 P P P,我称对应的 V V V中向量 O P → \overrightarrow{OP} OP 为点 P P P的向径。
这样,我便能建立起从点集 A A A到向量空间 V V V的双射 F F F:
F : P → G ( O , P ) = O P → , P ∈ A , O P → ∈ V . F:P\rightarrow G(O,P)=\overrightarrow{OP},P\in A,\overrightarrow{OP}\in V. F:PG(O,P)=OP PA,OP V.

  1. 对应 A A A中一个点 P P P,由映射 G G G知道必然存在 O P → ∈ V \overrightarrow{OP}\in V OP V与之对应。
  2. 对V中任意一个向量 v v v,由仿射空间定义中的条件(2)可以知道,必然存在一点 P ∈ A P\in A PA,使得 G ( O , P ) = O P → G(O,P)=\overrightarrow{OP} G(O,P)=OP

注:欧几里得第五公理(平行公理)在仿射空间中也成立。(我想就仿射空间中的五条欧几里得公理写一个支线篇,存

建立完 A A A V V V之间的一一映射,下面我们仿照 V V V A A A中建立坐标系。

定义:标架

A A A是n维仿射空间, V V V是伴随的向量空间。任取 A A A中一点 O O O以及 V V V中一个基底 { v i } \{v_i\} {vi},则称图形 { O ; v i } \{O;v_i\} {O;vi}为仿射空间 A A A中一个标架

在仿射空间 A A A中取定一个标架 { O ; v i } \{O;v_i\} {O;vi}就相当于在 A A A中建立了一个坐标系,此时, A A A便与其伴随向量空间的伴随空间 R n R^n Rn产生了一一对应关系:
P ↔ O P → = ∑ i = 1 n λ i v i ↔ ( λ 1 , . . . , λ n ) P\leftrightarrow \overrightarrow{OP}=\sum_{i=1}^n \lambda^iv_i\leftrightarrow(\lambda^1,...,\lambda^n) POP =i=1nλivi(λ1,...,λn).
其中数组 ( λ i ) (\lambda^i) (λi)称为点 P P P在架构 { O ; v i } \{O;v_i\} {O;vi}下的坐标。

Part Two 欧氏空间

定义: 欧氏空间
( V , < ⋅ , ⋅ > ) (V,<\cdot,\cdot>) (V,<,>)是n维欧氏向量空间,则以 V V V为伴随向量空间的仿射空间称为n维欧氏空间,记为 E n E^n En.欧氏空间 E n E^n En中任意两点 P , Q P,Q P,Q之间的距离定义为
d ( P , Q ) = P Q → ⋅ P Q → . d(P,Q)=\sqrt{\overrightarrow{PQ}\cdot \overrightarrow{PQ}}. d(P,Q)=PQ PQ .

p.s.:欧氏向量空间:定义了内积的有限维向量空间。具体内容可查看微分几何 Class 1 向量空间.

这样的话我们就能得到向量空间,欧氏向量空间,仿射空间,欧氏空间间的大致关系图:

在这里插入图片描述

在其中,欧氏空间与仿射空间是点的空间,而向量空间与欧氏向量空间是向量的空间。我们可以通过选定原点后同构于向量空间的想法来研究点的空间。

当我们研究 R n R^n Rn时,会发现它作为一个点的空间时,可以把它看做 R n R^n Rn向量空间的仿射空间,而且其本身便定义有欧几里得内积,因而 R n R^n Rn既是欧氏空间,又是欧氏向量空间

Part 3 欧氏空间中的正交标架变换

欧氏空间 E n E^n En是点的空间,其伴随向量空间 K n K^n Kn为欧氏向量空间。在 E n E^n En中选定一个点 O O O之后,对于点 P P P便会有一个坐标 ( p 1 , p 2 , . . . , p n ) (p_1,p_2,...,p_n) (p1,p2,...,pn),其得到坐标的过程如下:
P ∈ E n → G ( O , P ) = v ∈ K n → ( p 1 , p 2 , . . . , p n ) ∈ K n ∗ P\in E^n \rightarrow G(O,P) =v\in K^n\rightarrow (p_1,p_2,...,p_n)\in {K^{n}}^* PEnG(O,P)=vKn(p1,p2,...,pn)Kn
上述式子中 K n ∗ {K^{n}}^* Kn是欧氏向量空间 K n K^n Kn中的伴随空间。

那么,当原点选择改变时,比如换成了 O ′ O' O,点 P P P对应的坐标也会随之改变,记为 ( p 1 ′ , p 2 ′ , . . . , p n ′ ) (p_1',p_2',...,p_n') (p1,p2,...,pn)。其得到坐标的过程如下:
P ∈ E n → G ( O ′ , P ) = v ′ ∈ K n → ( p 1 ′ , p 2 ′ , . . . , p n ′ ) ∈ K n ∗ P\in E^n \rightarrow G(O',P) =v'\in K^n\rightarrow (p_1',p_2',...,p_n')\in {K^{n}}^* PEnG(O,P)=vKn(p1,p2,...,pn)Kn

那么 G ( O ′ , P ) = G ( O ′ , O ) + G ( O , P ) G(O',P)=G(O',O)+G(O,P) G(O,P)=G(O,O)+G(O,P)相当于对坐标进行了一个平移变换 T \mathscr{T} T,即是说 ( p 1 ′ , p 2 ′ , . . . , p n ′ ) = ( p 1 , p 2 , . . . , p n ) + T (p_1',p_2',...,p_n')=(p_1,p_2,...,p_n)+\mathscr{T} (p1,p2,...,pn)=(p1,p2,...,pn)+T.

但是在新的正交标架下, { e 1 , e 2 , e 3 } \{e_1,e_2,e_3\} {e1,e2,e3} { e 1 ′ , e 2 ′ , e 3 ′ } \{e_1',e_2',e_3'\} {e1,e2,e3}未必相同,因为都是正交系,因而其存在一个正交变换 O \mathscr{O} O.

因而相比较于标准正交坐标系,新坐标系下 P P P点的坐标相当于进行了平移与正交变换:
( p 1 ′ , p 2 ′ , . . . , p n ′ ) = ( ( p 1 , p 2 , . . . , p n ) + T ) ∗ O (p_1',p_2',...,p_n')=((p_1,p_2,...,p_n) +T)*O (p1,p2,...,pn)=((p1,p2,...,pn)+T)O

其中:

  1. ∣ O ∣ > 0 |O|>0 O>0,表示保证了正交系的左手/右手系,称为刚体运动
  2. ∣ O ∣ < 0 |O|<0 O<0,表示改变了正交系的左手/右手系,称为镜面对称.

(Question:如果考虑高维情形,会不会出现非镜面对称的情况?)

上述的变换我们称之为一个合同变换,合同变换保证向量的距离与内积不变;容易证明,每一组平移变换与正交变换 ( T , O ) (T,O) (T,O)也对应着一种合同变换,对应着欧氏空间中的一组正交框架。

而且这些合同变换可构成一个合同变换群(一个可交换群)。



到这里,我们简略了解了我们要研究的问题的背景:欧氏空间,从下面一节课开始,我们便开始研究 E 2 , E 3 E^2,E^3 E2,E3上的曲线,曲面的几何性质。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值