小罗碎碎念
在肿瘤免疫学领域,三级淋巴样结构(TLS)正逐渐成为研究热点。
这篇论文详细阐述了TLS的结构、形成机制、评估体系及其在癌症治疗中的重要作用。
TLS是在慢性炎症环境下于非淋巴组织形成的异位免疫细胞簇,具有类似二级淋巴器官的结构和功能,其形成受多种细胞因子和趋化因子调控。目前已有多种评估TLS的方法,涵盖基因表达分析、组织学评估、细胞组成分析以及考虑其空间分布和成熟度的综合评估,这些评估方法为研究TLS在癌症中的作用奠定了基础。
对于从事医学AI研究的人员来说,这篇文章提供了极具价值的信息。TLS作为一种潜在的生物标志物,在免疫治疗和其他癌症治疗方式中展现出了重要的预测价值。它与患者的治疗反应和生存率密切相关,在多种癌症类型中,TLS的特征能够有效预测免疫检查点抑制剂等治疗的效果。然而,当前TLS的检测和量化面临诸多挑战,如结构和功能的异质性、缺乏标准化检测标准等,这为医学AI的介入提供了广阔空间。
医学AI在TLS研究中具有巨大的应用潜力。利用AI技术可以对TLS进行更精准的检测和分析,例如通过深度学习算法对TLS进行识别和成熟度评估,有望提高检测的准确性和效率,克服传统检测方法的局限性。AI还能整合多组学数据,挖掘TLS相关的复杂生物标志物模式,为个性化癌症治疗方案的制定提供有力支持。未来,医学AI与TLS研究的结合将为癌症治疗带来新的突破,推动精准医学的发展。
交流群
欢迎大家加入【医学AI】交流群,本群设立的初衷是提供交流平台,方便大家后续课题合作。
目前小罗全平台关注量52,000+
,交流群总成员1100+
,大部分来自国内外顶尖院校/医院,期待您的加入!!
由于近期入群推销人员较多,已开启入群验证,扫码添加我的联系方式,备注姓名-单位-科室/专业
,即可邀您入群。
知识星球
如需获取更多内容,欢迎加入我的【生信分析】知识星球!
一、介绍
次级淋巴器官(SLOs),如淋巴结、脾脏及黏膜相关淋巴组织,对于启动和协调免疫反应至关重要。这些器官提供了一个结构化的环境,使免疫细胞能够有效地与抗原相互作用,从而促进适应性免疫反应。
三级淋巴结构(TLSs)并非在胚胎发育中预先设定,其在形态和功能上模拟SLOs。在慢性炎症条件下,如癌症,TLSs在非淋巴组织中形成,由B细胞、T细胞、树突状细胞和高度内皮静脉组成。
TLSs的形成被认为是由类似于组织SLOs的分子信号所启动,包括淋巴毒素和肿瘤坏死因子(TNF)家族。
在肿瘤学领域,肿瘤微环境中的TLSs越来越被认为是活跃局部免疫活动的指标。这些结构可以启动并维持抗肿瘤免疫反应,因此成为癌症免疫治疗策略的核心。
TLSs的发展与成熟受到多种趋化因子和细胞因子的调控,这些因子控制免疫细胞在肿瘤中的迁移和组织,从而促进肿瘤抗原在局部向免疫细胞的呈递,可能有助于更有效的免疫介导肿瘤破坏。
肿瘤生物标志物是机体或癌细胞产生的生物学分子,可通过测量来指示癌症的存在、预测预后或监测治疗反应。此类生物标志物包括肿瘤突变负荷(TMB)以及EGFR和KRAS等基因的突变。
近期研究强调了TLSs在各种癌症预后中的重要性,尤其是它们的存在与患者预后改善的相关性,尤其是在免疫治疗(如检查点抑制剂)和非免疫治疗(如化疗)的反应中。这归功于TLSs在肿瘤内T细胞的启动和激活功能,这对于这些治疗的有效性至关重要。
最新文献强调了TLSs在各种癌症预后中的意义,因为它们的存在通常与患者预后的改善相关,特别是在对免疫治疗(如检查点抑制剂)和传统治疗(如化疗)的反应中[1,2]。这些发现表明,TLSs不仅有助于肿瘤内T细胞的启动和激活,还提高了癌症治疗的整体有效性。
对癌症中TLSs的研究不仅深化了我们对肿瘤免疫学的理解,还揭示了增强肿瘤免疫原性的治疗干预新可能性。通过促进TLSs的形成或增强其功能,我们可能提高现有免疫治疗的有效性,从而改善患者的临床结局。
本综述深入探讨了TLSs的结构、形成和作为预测生物标志物的作用,讨论了它们预测治疗反应的能力以及在免疫治疗之外的潜力,以及临床检测的可能性。此外,本文旨在识别当前研究领域的不足,如需要标准化方法来评估TLSs并理解其在肿瘤进展和治疗反应不同阶段的动态作用。
二、三级淋巴结构
三级淋巴结构(TLSs)是在非淋巴组织慢性炎症区域形成的异位有序免疫细胞集群,如在癌症和长期感染中观察到的情况。
TLSs模拟了次级淋巴器官(SLO)中淋巴滤泡的结构、趋化因子表达和血管结构,其中心区域主要由CD20+B细胞组成,这些细胞散布在CD21+滤泡树突状细胞(FDCs)之间,周围是CD3+T细胞区域,并可包含树突状细胞和CD68+巨噬细胞。
此外,TLSs具有高度内皮静脉(HEVs)组成的良好组织的血管系统,并表达诸如CC-chemokine配体19(CCL19)、CCL21和CXC-chemokine配体13(CXCL13)等趋化因子,这些因子在吸引和促进淋巴细胞进入淋巴结方面发挥关键作用,尽管TLSs缺乏SLO周围明确的包膜(见图1)[1,3–6]。
图1展示了癌症中三级淋巴结构(TLS)的结构。
TLS是肿瘤微环境中形成的类似淋巴组织的结构,可能参与局部免疫反应。
-
左侧部分(Tumor):展示了肿瘤组织,其中包含肿瘤细胞(粉红色)、刺激的T细胞(蓝色箭头指向)、肿瘤相关抗原(红色点)等。
-
右侧部分(TLS):展示了三级淋巴结构,其中包含多种免疫细胞和结构,如CD20+B细胞(蓝色)、CD4+T细胞(绿色)、CD8+T细胞(浅蓝色)、滤泡树突状细胞(FDC,黄色)、树突状细胞(浅黄色)、巨噬细胞(棕色)、调节性T细胞(Treg,浅黄色)、高内皮微静脉(HEV,红色环)等。
-
中间箭头:表示从肿瘤到TLS的过渡或相互作用。
-
肿瘤部分:肿瘤细胞是主要的细胞类型,同时存在一些免疫细胞如T细胞,可能在尝试攻击肿瘤细胞。肿瘤相关抗原可能被免疫细胞识别,触发免疫反应。
-
TLS部分:TLS的中心核心主要由CD20+B细胞和滤泡树突状细胞(FDCs)组成。围绕这个核心的是CD4+和CD8+T细胞,以及树突状细胞、巨噬细胞、调节性T细胞(Tregs)和组织良好的高内皮微静脉(HEVs)。这些细胞和结构共同构成了一个类似淋巴结的微环境,可能促进免疫细胞的激活和增殖。
-
相互作用:在肿瘤的背景下,肿瘤周围的TLS提供了一个额外的环境,使T细胞能够与肿瘤相关的树突状细胞相互作用。这种相互作用可能增强T细胞的激活和增殖,从而更有效地攻击肿瘤细胞。
TLSs通过致密的间质网络和血管结构锚定在慢性炎症部位[7]。
在TLS内发现的多数T细胞表达CD62L,主要表现为CD4+记忆表型,夹杂少量CD8 T细胞,与肿瘤内其他区域相比,幼稚T淋巴细胞在这些结构中显著更为丰富,同时还有密集的MHC II+细胞(见图1)[8,9]。
在TLS中,免疫细胞之间的相互作用,尤其是抗原呈递树突状细胞激活CD8+和CD4+T细胞的过程,与SLOs中的情况相似。然而,与SLOs不同的是,TLSs中也存在Treg细胞,它们在肿瘤微环境中抑制内源性免疫反应,并独特地影响免疫激活与抑制之间的平衡。
TLSs通过表达CCL19、CCL21和CXCL13等趋化因子,促进幼稚和记忆T细胞、B细胞和NK细胞从血液中招募到炎症部位,促进它们与抗原呈递DCs的相互作用。在此过程中,局部招募的CD8+和CD4+T细胞经历激活,同时Treg细胞抑制免疫反应[10–12]。
存在于肿瘤周围或肿瘤内的TLS,其中T细胞可能会遇到肿瘤相关DCs,可能为T细胞提供额外的刺激,增强其激活和增殖,并作为T细胞启动的场所[13],这可能是TLS提高免疫治疗效果的潜在机制。
三、三级淋巴结构(TLSs)的形成
与次级淋巴器官(SLOs)不同,TLSs并非在胚胎发育过程中形成,而是在经历慢性炎症的非淋巴组织中出现[1]。尽管如此,调控SLOs和TLSs形成与维持的分子机制展现出显著的相似性。
肿瘤坏死因子(TNF)家族成员,主要是淋巴毒素-α1β2(LTα1β2),以及一定程度的TNF,在次级淋巴器官的形成中发挥关键作用。LTα1β2、TNF和由淋巴组织诱导细胞(LTi)分泌的IL-17,与它们各自在间质细胞上的受体LTβR和TNFR1结合,诱导细胞间粘附分子1(ICAM1)、血管细胞粘附分子1(VCAM1)和粘膜地址素细胞粘附分子1(MADCAM1)的表达(见图2a)[14]。
此外,这些信号触发血管内皮生长因子C(VEGFC)的表达,VEGFC可诱导高度内皮静脉(HEV)的形成,并由血管平滑肌细胞表达一组称为淋巴或稳态趋化因子CCL19、CCL21、CXCL12和CXCL13,这些趋化因子调节淋巴细胞归巢和在淋巴组织中的分隔(见图2a)[1,15]。
最近的研究发现,在克罗恩病的情况下,这些趋化因子也可由肠系膜脂肪细胞产生[16]。分化的高度内皮静脉(HEVs)通过表达外周节点地址素(PNAd)控制淋巴细胞的进入,并决定招募到淋巴组织的特定类型淋巴细胞(见图2a)[17]。
随后,淋巴滤泡的分隔通过由CXCL13产生CD4+T细胞产生的B细胞招募趋化因子CXCL13来实现,该趋化因子招募表达淋巴毒素-α1β2的B细胞,对在脾脏和淋巴结中形成和维持B淋巴细胞滤泡和生发中心(GCs)发挥关键作用,CXCL13也参与TLSs的发展[20]。
在TLSs中观察到CD86+抗原呈递B细胞(BAPC)的积累,它们与T细胞共存,导致CD8+T细胞对肿瘤的浸润增加和肿瘤抗原特异性T细胞反应的提高[21]。在沙门氏菌感染中,表达cDC1和cDC2的粘膜驻留CX3CR1hi巨噬细胞亚群作为抗原呈递细胞(APC),负责在沙门氏菌入侵部位招募和激活CD4+T和B细胞,这对于TLS的形成和局部病原体特异性IgA反应的诱发至关重要[22]。
淋巴趋化因子的分泌还启动了维持淋巴生态位至关重要的正向反馈循环。例如,存在于B细胞和淋巴组织诱导(LTi)细胞上的CXCR5的信号被识别为诱导LTα1β2的表达。在TLSs的发展中,TGFβ促使活化的CD8+T细胞和其他肿瘤浸润T细胞(TILs)产生CXCL13,启动TLSs的形成并促进肿瘤部位生发中心B细胞反应[23,24]。
在一项小鼠黑色素瘤模型中,证明了存在完整的CXCR5-CXCL13趋化轴的肿瘤相关三级淋巴结构(TA-TLSs)能够促进表现出淋巴组织组织细胞(LTo)特征的癌症相关成纤维细胞(CAFs)的增殖。这些CAFs然后通过CD8 T细胞介导的网状网络重建,而CAFs的积累和TA-TLSs的扩展依赖于CXCL13介导的LTα1β2表达B细胞的招募[25]。
除了淋巴毒素驱动的趋化因子外,抗原刺激对于TLSs的启动和维持同样至关重要,因为异位生发中心(GCs)产生的浆细胞能够针对目标组织表达的抗原产生特异性抗体[23]。抗原暴露触发抗原特异性B细胞的克隆扩增。CXCL13-CXCR5轴通过诱导B细胞膜上抗原的积累,显著增强B细胞激活[26],从而增强B细胞受体(BCR)信号传导。因此,这些激活的B细胞成为有效的抗原呈递细胞(APCs)。
此外,其他免疫细胞类型也被激活。向巨噬细胞发送激活和抗凋亡信号,并刺激新激活的T细胞产生高水平IFN-γ,最终形成对病原体的全面而强烈的免疫反应[12]。TLSs是动态结构,尤其是B细胞向浆细胞成熟的原位场所,它们在初级免疫反应期间迅速演变,但在慢性抗原刺激下获得更大的稳定性[27,28]。
TLSs也可以被诱导形成
通过使用血管靶向肽(VTP)将属于肿瘤坏死因子超家族的细胞因子LIGHT递送到小鼠肿瘤的血管生成血管中,Johansson-Percival等人触发了肿瘤内TLSs的形成以及内源性T细胞向自发性或同种异体移植肿瘤的迁移[29]。
使用大脑内皮细胞特异性腺相关病毒(AAV)载体表达LIGHT,可以诱导富含T细胞的肿瘤相关高度内皮静脉(HEVs)和TLS的形成,同时减少对αPD-1治疗抵抗的小鼠胶质瘤中的T细胞耗竭并延长生存期[30]。
在小鼠胶质瘤模型中,通过系统性给予免疫刺激性的激动性CD40抗体(αCD40)成功诱导了TLSs,激活B细胞,从而增强TLSs的形成[31]。将低剂量的STING直接注入肿瘤中,在小鼠模型中诱导了促炎症肿瘤微环境(TME),这是通过增加促进DC成熟并进而促进免疫细胞浸润和TLS形成的趋化因子的产生来实现的[32]。
肿瘤内注射工程化细胞,如大量分泌相关细胞因子的工程化DCs[33],也可以用来诱导TLSs的形成[19]。使用脉冲电场(PEFs)的癌症消融也被证明可以诱导TLSs的形成,这些TLSs作为免疫启动方式,刺激抗肿瘤免疫反应[34]。TLS的诱导作为一种新颖的免疫治疗方法,在各种肿瘤背景下均显示出前景。
四、TLS评估系统
4.1. 经典组织学方法
随着TLS研究的进展,TLS的评估方式也在不断发展。
一种基于12种趋化因子基因表达特征的基因表达签名,通过评估12个特定趋化因子基因的活动来衡量肿瘤微环境中TLS的存在,已经在多种癌症类型中显示出预后价值。表现出最高12-CK得分(12-chemokine gene expression signature)的个体一致地显示出以TLS丰富为特征的显著的肿瘤周围免疫反应,这与更好的生存结果相关。
这可能归因于其预测特殊结构存在的能力,这些结构类似于淋巴结,其特征是包含CD20+B细胞滤泡和富含CD3+T细胞的明确区域[35,36]。因此,组织学TLS评分与12基因TLS签名之间建立了稳健的联系。
然而,在肝细胞癌中,较高的组织学评分与整体生存率的降低相关[37]。
4.2. 分子方法
评估TLS的一种替代方法涉及检查其细胞组成。
确定了五个独特的TLS集群,它们通过免疫细胞群体的变化而区分,包括B细胞、辅助和效应T细胞、Treg细胞和巨噬细胞等。基于这种分类,个体被分为TLS低组和TLS高组,揭示了不同的TLS模式[38,39]。
TLS还可以根据肿瘤浸润淋巴细胞(TIL)中Tfh细胞的存在与否,被分类为活跃或不活跃。活跃TLS的存在,其特征是Tfh TIL,与乳腺癌中的积极临床结果相关[40]。
还利用29基因签名进行批量RNA分析,以分类透明细胞肾细胞癌(ccRCC),这种分类涉及基于B细胞受体库将TLS高组和TLS低组区分开来[28]。
4.3. 空间方法
后续研究包括了TLS的评估,将其分类为肿瘤内TLS和肿瘤周围TLS,并考虑了它们的空间分布,其中大多数TLS位于肿瘤周围(图2a)。
左侧部分
- 慢性炎症和肿瘤相关抗原暴露:图片左上角标注了“慢性炎症”和“肿瘤相关抗原暴露”,这是TLS形成的初始条件之一。慢性炎症和肿瘤相关抗原的存在可以诱导免疫细胞的募集和激活。
- 细胞和分子信号:
- LTα1β2:淋巴毒素-α1β2,一种参与淋巴器官发育和免疫反应的细胞因子。
- TNF:肿瘤坏死因子,一种重要的炎症细胞因子。
- IL-17:白细胞介素-17,由Th17细胞分泌,参与炎症反应。
- LTβR:淋巴毒素β受体,LTα1β2的受体,激活后可诱导TLS的形成。
- VEGFC:血管内皮生长因子C,参与淋巴管生成。
- CCL19, CCL21, CXCL12, CXCL13:这些趋化因子参与免疫细胞的募集和定位。
- ICAM1, VCAM1, MADCAM1:这些黏附分子参与免疫细胞与内皮细胞的黏附,促进免疫细胞的迁移。
中间部分
TLS的形成和组成:
- 细胞类型:
- CD20+B细胞:主要集中在TLS的中心核心。
- CD4+T细胞:围绕在B细胞周围,参与免疫反应的调节。
- CD8+T细胞:参与直接杀伤肿瘤细胞。
- 树突状细胞:重要的抗原呈递细胞。
- 巨噬细胞:参与炎症反应和免疫调节。
- 调节性T细胞(Treg):抑制免疫反应,维持免疫平衡。
- 高内皮微静脉(HEV):促进淋巴细胞的迁移。
右侧部分
TLS在肿瘤中的位置:
- Peritumoral TLS:肿瘤周围的TLS,在肿瘤边缘形成。
- Intratumoral TLS:肿瘤内部的TLS,在肿瘤组织内部形成。
在胰腺导管癌中,具有肿瘤内TLS的患者,其特征是TIL的浸润增加,往往表现出更有利的结果[41]。这种评估方法也应用于各种其他癌症类型,例如肝细胞癌,在这种情况下,肿瘤周围TLS(pTLS)被确定为患者生存的独立预后因素[35]。
然而,在乳腺癌中,肿瘤周围TLS与较差的生存结果相关。因此,根据正常乳腺组织之间的邻近性和存在,将肿瘤周围TLS进一步细分为邻近TLS(aTLS)和远处TLS(dTLS)[42]。
4.4. 成熟度评估方法
在多种癌症类型的研究中,如肺癌、胃肠癌、转移性黑色素瘤、膀胱癌、胰腺癌、食管鳞状细胞癌、非小细胞肺癌(NSCLC)、肾透明细胞癌和结直肠癌(CRC)等,已经根据TLS的成熟度进行分类[16,43–51]。
TLS成熟度可分为三个连续阶段,由CD21+滤泡树突状细胞和成熟B细胞的逐渐增多来区分:
- 早期TLS(E-TLS)以密集的淋巴细胞聚集为特征,但缺乏CD21+树突细胞。
- 初级滤泡样TLS展现带有CD21+树突细胞网络的B细胞簇,但不包括CD23+生发中心。
- 次级滤泡样TLS包含CD23+生发中心。
前两种情况通常被归类为不成熟TLS或低成熟度TLS,而最后一种情况则被分类为成熟TLS[49,52]。
在大多数情况下,成熟TLS的存在与积极的预后相关。然而,值得注意的是,在肾透明细胞癌中,TLS的存在与不良预后相关[53]。
考虑到基于成熟状态对TLS进行分类,观察到CD57自然杀伤(NK)细胞和CD8+T细胞与高TLS成熟状态呈正相关。在口腔鳞状细胞癌中,将这些因素结合使用,获得了最高的预测准确性[54]。
此外,将TLS密度和TLS成熟度结合,生成了TLS免疫评分(ITLS),作为预测结直肠癌复发风险的统一参数,其准确性更高[49]。
多项研究结合了多个因素,形成了一种多方面评估TLS的方法。
最初,TLS被划分为三个不同的亚区域:
- 肿瘤内(T)
- 侵袭边缘
- 肿瘤周围(P)区域
随后,通过评估这些亚区域内的TLS丰富度和成熟状态,建立了一个TLS评分系统,产生了单独的T和P分数。
T和P分数的结合允许将肝内胆管癌[55]和结直肠癌肝转移[56]分为四个免疫类别。Ⅰ类主要特征是位于P区域的TLSs,而Ⅳ类主要在T区域。Ⅱ类和Ⅲ类介于这两个极端之间。
与Ⅰ类相比,高级别类别特征是Tfh细胞的存在更多,表明风险较低。这种差异可能归因于Ⅰ类TLS由于缺乏Tfh细胞而停滞在不成熟状态。不同区域TLS的数量预示着独特的预后结果[57]。
此外,对非转移性结直肠癌患者的临床结果评估考虑了与TLS相关的各种因素,包括它们的空间分布、密度和细胞成分[58]。创建了一个 Nomogram,其中纳入了P-TLS密度以及其他如TNM分期等因素。
与仅依赖TNM分期进行预后评估相比,该Nomogram显示出更高的预测准确性[58]。
最后,一项研究提出了三种量化TLS的方法:
- 半定量模型,评估组织中TLS的总数量。
- 定量总TLS模型,考虑外围和肿瘤核心区域的手动绝对计数。
- 定量GC+TLS模型,考虑淋巴滤泡的数量。
有趣的是,无论使用哪种评分模型,TLS评分均成为独立的预后因素,高TLS评分与更长的生存期相关[59]。
五、TLS作为免疫治疗的预测生物标志物
TLS与免疫检查点阻断治疗(ICB)的积极结果和有效性相关(见表1)。
TLS可能增强肿瘤浸润淋巴细胞的刺激,从而提升其功能、寿命和生长。在这些独特的TLS中,T细胞会遇到抗原呈递细胞,尤其是树突状细胞(DCs)。这种相互作用可以促使T细胞增殖并分化为各种形式,如效应细胞、记忆细胞或耗竭T细胞[13]。
此外,含有TLS的肿瘤表现出更多的浆细胞和B细胞,它们都能积极靶向并杀死肿瘤细胞[60]。
抗PD-1治疗已被观察到可以增加TLS的数量[74],这与肿瘤内T细胞通过PD-1阻断重新激活的能力相关[75]。特别是,富含TLS的肿瘤表现出CD8+ T细胞的增加浸润,在B细胞的引导下识别肿瘤相关抗原[76]。
根据Shang等人的TLS分类,肿瘤内区域显著存在的TLS,由高T分数指示,与接受免疫检查点阻断治疗的患者改善预后相关[57]。肿瘤微环境可以展示多样的TLS相关基因签名,这些签名通过关联免疫细胞群体如B系细胞、CD8+ T细胞、细胞毒性淋巴细胞、髓系树突状细胞、自然杀伤细胞和T细胞的基因表达变化而区分。
这些签名有望预测患者对PD-1阻断治疗的反应,显示最高TLS相关基因表达的签名与最高的完全反应率相关[77]。显然,TLS评分高的个体相比TLS评分低的个体,生存结果更佳,并且对免疫治疗显示出增强的反应性。
这一观察强调了TLS评分作为免疫治疗干预背景下预后和预测标志物的临床意义[78]。然而,在膀胱癌中,TLS评分低的组别与抗PD-1治疗的积极反应显著相关,这也与免疫检查点阻断(ICB)免疫治疗的改善反应相关[38]。
成熟TLS的存在与增强的生存相关,无论PD-L1表达状态和CD8+ T细胞密度如何,这一现象在免疫治疗后的胰腺导管腺癌(PDAC)化学免疫治疗中也被观察到[45]。特别是,表达成熟TLS基因签名的表达在PDAC患者治疗前活检中更为显著,这些患者在各种化学免疫治疗后的生存期延长[45]。
Hayashi等人的研究表明,TLS密度高的肿瘤主要由成熟TLS组成,与较晚期的肿瘤阶段和延长的生存显著相关。此外,TLS能够预测食管鳞状细胞癌患者对抗PD-1抗体治疗的临床反应和总体生存[62]。在PEMBROSAR临床试验中,TLS作为生物标志物,用于识别适合接受免疫检查点抑制剂(ICIs)治疗的软组织肉瘤患者。富含TLS的队列,通过特定的TLS相关基因表达模式识别,与更广泛的病人群体相比,显示出显著提高的反应率和更长的无进展生存期(PFS)[63]。
此外,肿瘤相关TLS的形成和排列通过免疫检查点阻断免疫治疗得到增强,并与小鼠黑色素瘤肿瘤大小的减少相关[25]。在黑色素瘤患者中,TLS可能有助于维持免疫反应性微环境,可能是通过TLS内B细胞与其他关键免疫成分的相互作用。这种关联已被证明与改善预后和对CTLA-4抑制剂的积极临床反应相关[64,65]。
TLS在新辅助免疫治疗患者中也是一种有效的预测生物标志物。
在接受新辅助化疗免疫治疗的患者中,TLS的丰富度和成熟度均得到增强,其中TLS成熟度在为可切除的非小细胞肺癌(NSCLC)患者进行术后风险分层时,比TLS丰富度更为重要[51]。
在接受了包括PD-L1和CTLA-4阻断剂在内的联合新辅助免疫治疗的患者中,与TLS相关的四个基因签名在响应者中的表达高于非响应者,这些患者患有高风险的尿路上皮癌。这强调了TLS作为预测生物标志物的潜力,用于识别可能对免疫检查点治疗有反应的患者[66]。
TLS的众多替代指标可能具有生物标志物的作用。鉴于任何成熟阶段的TLS存在都与CXCL13表达升高相关,CXCL13表达作为肿瘤TLS的替代指标,成为评估晚期膀胱癌患者对免疫检查点抑制剂反应的预测生物标志物的有希望候选。较高的CXCL13表达与改善预后相关[79]。
此外,表现出IgG标记的肿瘤细胞的患者对免疫检查点抑制剂(ICI)的反应率显著,并且无进展生存期(PFS)延长。这是因为具有TLS的肿瘤在IgG + CAIX +肿瘤细胞的染色上比具有未成熟TLS或无TLS的肿瘤更为显著[28]。
六、TLS作为免疫治疗以外的预测生物标志物
TLS不仅可以作为免疫治疗的生物标志物,其应用范围还扩展到了化疗和手术切除等其他医疗干预措施(见表1)。
在接受化疗的乳腺癌患者中,与未接受治疗的患者样本相比,检测到的TLS数量更多,且这种增加与治疗反应相关[67]。在接受术前化疗的个体中,包含CXCL13基因的8基因Tfh签名与治疗响应阳性概率的增加以及无病生存期的改善相关,这与未接受系统性治疗的患者相比[68]。
然而,在肺鳞状细胞癌患者中,TLS的功能性在新辅助化疗后似乎有所下降,其预测意义被抵消。这从与肿瘤相关的TLS内生发中心的发生率降低和尺寸减小中可以看出。化疗期间使用糖皮质激素部分导致了TLS发展的损害[50]。
TLS还可以作为接受肿瘤手术切除患者的预测生物标志物
在肝细胞癌(HCC)患者中,肿瘤内TLS的存在与复发风险的降低相关,表明持续的抗肿瘤反应[43]。TLS密度与中性粒细胞与淋巴细胞比率(NLR)的联合评估有望预测肝细胞癌(HCC)患者手术后的生存情况[69]。
在非小细胞肺癌(NSCLC)患者中,依赖于生发中心形成的TLS成熟度可以作为接受手术切除患者更高总生存的生物标志物[80,70]。在早期结直肠癌患者连续进行根治性手术切除的过程中,TLS可以增强肿瘤浸润淋巴细胞(TILs)的招募。
TLS与TILs协同作用,协调对肿瘤的同步免疫反应,这作为人类结直肠癌的预测生物标志物具有前景,预示着患者结局的改善[2]。在食管鳞状细胞癌(ESCC)和头颈部鳞状细胞癌(HNSCC)中,成熟TLS的存在与更好的预后相关,导致肿瘤复发率降低和总生存改善[47,60,71]。在接受检查点阻断治疗前进行手术的患者中,无论皮肤黑色素瘤转移(CMMs)中的TLS成熟状态如何,含有TLS的患者表现出整体生存的增强[48]。
TLS在促进卵巢癌患者初次手术后对肿瘤的免疫反应中发挥作用。此外,CXCL13基因的表达与TLS的发展以及肿瘤内T和B细胞浸润的数量紧密相关[72]。除了实体瘤,TLS还是切除的G1/G2级神经内分泌胰腺肿瘤(PanNETs)生存的独立预测因子[73]。
七、TLS的检测与量化
目前,在研究环境中,TLS的检测主要通过苏木精-伊红(H&E)染色、多重免疫组织化学(mIHC)或多重免疫荧光(mIF)以及趋化因子的实时定量聚合酶链反应(qPCR)来实现[81]。然而,在临床环境中检测TLS存在若干技术挑战,这复杂化了它们作为生物标志物的使用。
首先,TLS在结构和功能上具有高度异质性。这种异质性使得难以标准化检测方法,以准确识别和表征不同组织和疾病背景下的TLS。此外,缺乏定义和量化TLS的标准化的标准,这复杂了在不同临床环境中的评估。
Vanhersecke等提出了一种标准化方法,用于在癌症样本中筛选成熟TLS(mTLS),该方法涉及使用适用于所有标本类型的H&E染色和免疫组织化学,可能容易在临床环境中被采纳用于TLS检测(图2b)[52]。
用于评估肿瘤组织中三级淋巴结构(TLS)的流程图
-
H&E Review(苏木精-伊红染色审查):
- 这是初步的组织学评估步骤,用于观察肿瘤组织中的炎症细胞浸润情况。
-
初步分类:
- 根据H&E染色的结果,将样本分为三类:
- Inflammation ≥ 50 cells with visible germinal center(炎症细胞≥50个且可见生发中心):如果在H&E染色中观察到至少50个炎症细胞并且可见生发中心,则直接分类为成熟三级淋巴结构(mTLS)。
- Inflammation ≥ 50 cells without visible germinal center(炎症细胞≥50个但无可见生发中心):如果在H&E染色中观察到至少50个炎症细胞但没有可见的生发中心,则需要进一步进行免疫组化染色。
- No inflammation or inflammation < 50 cells(无炎症或炎症细胞<50个):如果炎症细胞少于50个或没有炎症,则直接分类为无三级淋巴结构(No TLS)。
- 根据H&E染色的结果,将样本分为三类:
-
进一步分类:
- 对于Inflammation ≥ 50 cells without visible germinal center的样本,进行CD20和CD23的免疫组化染色,以进一步评估B细胞和滤泡树突状细胞(FDC)的存在情况。
- B cells present(存在B细胞):如果CD20染色显示存在B细胞,则进一步评估FDC的情况。
- ≥ 1 FDC(存在至少1个FDC):如果CD23染色显示存在至少1个FDC,则分类为成熟三级淋巴结构(mTLS)。
- No FDC(无FDC):如果CD23染色显示没有FDC,则分类为不成熟三级淋巴结构(iTLS)。
- B cells absent(无B细胞):如果CD20染色显示没有B细胞,则直接分类为无三级淋巴结构(No TLS)。
- B cells present(存在B细胞):如果CD20染色显示存在B细胞,则进一步评估FDC的情况。
- 对于Inflammation ≥ 50 cells without visible germinal center的样本,进行CD20和CD23的免疫组化染色,以进一步评估B细胞和滤泡树突状细胞(FDC)的存在情况。
通过H&E染色和免疫组化染色(CD20和CD23),可以将TLS分为以下三类:
- mTLS(成熟三级淋巴结构):存在B细胞和至少1个FDC,或在H&E染色中观察到生发中心。
- iTLS(不成熟三级淋巴结构):存在B细胞但没有FDC。
- No TLS(无三级淋巴结构):无炎症或炎症细胞少于50个,或没有B细胞。
这种分类方法有助于更好地理解肿瘤微环境中的免疫反应,并可能对肿瘤的预后和治疗具有指导意义。
TLS检测方法,如mIHC,可能劳动密集且不易规模化,这限制了它们在大规模临床研究或常规临床实践中的实用性。因此,除了传统的病理学方法,随着对TLS认识的深入,越来越强调开发稳健的TLS量化系统,以使用人工智能精确评估TLS。
这一演变与精准医学的原则相符。一项深度学习分类器被用于检测TLS并评估其成熟状态,在患者样本中,TLS识别的整体准确率为100%,成熟TLS识别的曲线下面积(AUC)为0.973。结果表明,成熟TLS的存在作为改善无病生存(DFS)和总生存(OS)的独立预测因子[47]。这展示了更先进、更精确的检测和分析技术。
此外,Chen等提出了一种基于深度学习的方法,自动化并标准化TLS分割和量化过程,该方法在内部测试集上达到了0.91的Dice系数,在外部验证集上达到了0.866,以及分别为0.819和0.787的交并比(IoU)分数[82]。这种方法从H&E组织病理学图像中计算TLS比率并提取临床有用的见解。
最后但同样重要的是,仅基于结构特征检测TLS并不能必然提供关于其功能性的信息,例如它们产生有效免疫反应的能力。因此,利用空间组学和三维(3D)成像对TLS的功能性分析可能指示TLS评估中的新研究方向。
Cabrita等利用GeoMx数字空间分析器进行了高通量蛋白质组学分析,以研究各种T细胞和B细胞群体的分子特征。他们识别出TLS内两种主要的CD20+B细胞群,通过Ki67的高表达或低表达来区分。他们得出结论,高度增殖的B细胞位于生发中心(GCs)周围,并且成熟的TLS与同时表达Ki67和CD40的B细胞相关[64]。
Helmink等利用GeoMx数字空间分析器揭示了在免疫检查点阻断(ICB)治疗前和治疗中响应者的黑色素瘤样本中B细胞标志物的显著高表达[65]。此外,Randolph等开发了一种3D成像方法,用于表征克罗恩病(CD)患者肠系膜组织中的淋巴管结构,将这些结构识别为TLS。
这种3D成像技术也可能用于识别肿瘤中的TLS,增强其视觉呈现[83]。Gan等创建了一个新的评分系统,使用空间转录组分析来评估肝细胞-胆管细胞癌(cHCC-CCA)患者肿瘤内和肿瘤周围区域(iTLS和eTLS评分)TLS的分布和频率,iTLS评分与良好预后正相关[84]。
精确表征TLS亚型具有巨大的潜力。它能够实现更加个性化的免疫治疗方法,促进各种疾病患者的分层,包括癌症,提供预测疾病预后和治疗反应的有希望的生物标志物,甚至允许根据特定的TLS亚型定制疗法,最终导致治疗结果的改善。
八、结论
次级淋巴样结构(TLSs)在慢性炎症期间在非淋巴样组织中形成,模仿次级淋巴器官。关于TLS的研究不断发展,已衍生出多种评估方法,包括基因表达签名和组织学分析。
然而,仍迫切需要对TLS进行更全面的表征,这可能包括TLS的空间分布、细胞组成、成熟状态以及存在的淋巴细胞的多样性[85]。TLS的存在和结构、细胞组成以及成熟状态在评估其在疾病预后和治疗反应中的作用至关重要。TLS的存在与免疫治疗改善预后相关,可能是通过在肿瘤微环境(TME)内作为T细胞启动的场所。
因此,T细胞的激活不仅受引流淋巴结(dLN)的影响[13]。TLS内的丰富度、成熟度和特定基因表达模式预示着患者对PD-1阻断剂和其他免疫检查点抑制剂治疗的反应。TLS也作为化疗和手术切除等其他治疗的生物标志物。它们的存在和成熟状态与各种癌症的治疗反应和生存率相关。
与其它经典生物标志物相比,TLS显示出更高的预测效能。
例如,肿瘤突变负荷(TMB)需要大量的样本量,且无法完全预测对免疫治疗的反应;PD-L1表达检测的效率受到时间和石蜡块保存等因素的影响;循环肿瘤DNA(ctDNA)在血液中的半衰期极短。
相比之下,TLS以其更稳定的CD分子,在基于病理的检测中具有优势。诱导TLS形成已成为一种新颖的免疫治疗策略。尽管TLS具有临床意义,但在临床环境中检测TLS面临许多技术挑战,且临床环境中尚未建立官方的TLS检测流程。需要开发新型成像技术,以非侵入性方式评估TLS,包括在体内可视化并量化TLS,这有助于在治疗过程中非侵入性地监测其演变和状态。Vanhersecke等提出的方法可能适用于临床环境中的TLS检测[52]。
总之,本综述强调了TLS在慢性炎症性疾病中的重要性,尤其是在癌症中,它们作为预测治疗结果和指导免疫治疗及非免疫治疗策略的生物标志物的潜力。此外,本文还确定了若干研究空白,并建议将TLS评估转化为常规临床实践的未来方向。
常见缩略词汇总
A
- AAV Adeno-associated viral:腺相关病毒,一种常用于基因治疗的病毒载体,因其安全性和高效性而被广泛应用。
- aTLS adjacent TLS:相邻的三级淋巴结构,指肿瘤微环境中与肿瘤细胞相邻的淋巴细胞聚集区域,可能在局部免疫反应中发挥作用。
B
- BAPC antigen-presenting B cell:抗原呈递B细胞,一种具有抗原呈递功能的B细胞亚群,参与免疫反应的启动和调节。
C
- CAFs cancer-associated fibroblasts:肿瘤相关成纤维细胞,肿瘤微环境中的重要细胞成分,可促进肿瘤生长和转移。
- CCL19 CC-chemokine ligand 19:CC趋化因子配体19,一种参与免疫细胞募集和迁移的细胞因子。
- CECL13 CXC-chemokine ligand 13:CXC趋化因子配体13,与淋巴细胞的募集和定位相关。
- CD Crohn’s disease:克罗恩病,一种慢性炎症性肠病,与免疫系统异常有关。
- ccRCC Clear cell renal cell carcinoma:透明细胞肾细胞癌,肾癌的一种常见类型,具有特定的病理特征和分子机制。
- CMMs Cutaneous Melanoma Metastases:皮肤黑色素瘤转移灶,黑色素瘤是一种恶性皮肤肿瘤,容易发生转移。
D
- DCs Dendritic cells:树突状细胞,重要的抗原呈递细胞,能够激活T细胞,启动免疫反应。
- DFS Disease-Free Survival:无病生存期,指患者在治疗后没有出现疾病复发或进展的生存时间。
- dTLS distant TLS:远处的三级淋巴结构,指肿瘤微环境中远离肿瘤细胞的淋巴细胞聚集区域。
F
- FDCs Follicular dendritic cells:滤泡树突状细胞,主要存在于淋巴滤泡中,参与B细胞的激活和抗体产生。
G
- GCs Germinal centers:生发中心,淋巴结等二级淋巴器官中B细胞增殖和分化的场所。
H
- HEVs High endothelial venues:高内皮微静脉,主要存在于二级淋巴器官,是淋巴细胞进入淋巴结的重要通道。
- HCC Hepatocellular carcinoma:肝细胞癌,一种常见的原发性肝癌类型。
- HSNCC Head and neck squamous cell carcinoma:头颈部鳞状细胞癌,头颈部常见的恶性肿瘤之一。
I
- ICAM1 intercellular adhesion molecule 1:细胞间黏附分子1,参与细胞黏附和免疫细胞的迁移。
- ICB Immune checkpoint blockade:免疫检查点阻断,一种癌症免疫治疗方法,通过阻断免疫抑制信号来增强抗肿瘤免疫反应。
- ICIs Immune checkpoint inhibitors:免疫检查点抑制剂,用于癌症治疗的药物,能够阻断免疫检查点分子,增强免疫系统对肿瘤的攻击能力。
- ITLS TLS immunoscore:三级淋巴结构免疫评分,一种评估肿瘤微环境中免疫细胞浸润情况的指标,与患者的预后相关。
L
- LTα1β2 lymphotoxin-α1β2:淋巴毒素-α1β2,一种参与淋巴器官发育和免疫反应的细胞因子。
- LTi Lymphoid tissue inducer cells:淋巴组织诱导细胞,参与淋巴器官发育的关键细胞类型。
- LTo lymphoid tissue organizers:淋巴组织组织者,负责淋巴器官结构形成的细胞群体。
M
- MADCAM1 Mucosal addressing cell-adhesion molecule 1:黏膜归巢细胞黏附分子1,参与淋巴细胞向黏膜组织的迁移。
- mIHCL multiplex immunohistochemistry:多重免疫组化,一种用于检测组织中多种蛋白质表达的技术。
- mIF multiplex immunofluorescence:多重免疫荧光,通过荧光标记检测多种蛋白质在组织或细胞中的定位和表达。
N
- NLR Neutrophil-to-lymphocyte ratio:中性粒细胞与淋巴细胞比值,一种反映炎症和免疫状态的血液学指标,与多种疾病的发生发展相关。
O
- OS Overall Survival:总生存期,指患者从诊断或治疗开始到因原因任何死亡的时间,是评估癌症治疗效果的重要指标。
P
- PanNETs Pancreatic neuroendocrine tumors:胰腺神经内分泌肿瘤,胰腺的一种特殊类型肿瘤,具有神经内分泌功能。
- PNAd peripheral node addressing:外周淋巴结归巢,指淋巴细胞向外周淋巴结迁移的过程。
- PDAC Pancreatic ductal adenocarcinoma:胰腺导管腺癌,胰腺癌中最常见的类型,具有高度恶性特征。
- PFS Progression-free survival:无进展生存期,指患者在治疗后没有出现疾病进展的生存时间,是评估癌症治疗效果的重要指标之一。
- pTLS peritumoral TLS:肿瘤周围三级淋巴结构,指肿瘤周围区域的淋巴细胞聚集,可能参与抗肿瘤免疫反应。
Q
- qPCR quantitative polymerase chain reaction:定量聚合酶链反应,一种用于定量检测核酸分子的技术,广泛应用于基因表达分析和病原体检测。
S
- SLOs Secondary lymphoid organs:二级淋巴器官,如淋巴结、脾脏等,是免疫细胞聚集和免疫反应发生的重要场所。
T
- TLS Tertiary lymphoid structure:三级淋巴结构,肿瘤微环境中形成的类似淋巴组织的结构,可能参与局部免疫反应。
- TMB Tumor mutational burden:肿瘤突变负荷,指肿瘤细胞中基因突变的数量,与免疫治疗效果相关。
- TNF Tumor necrosis factor:肿瘤坏死因子,一种重要的炎症细胞因子,参与多种炎症和免疫反应。
- TILs tumor-infiltrating T cells:肿瘤浸润T细胞,指进入肿瘤组织内部的T细胞,是抗肿瘤免疫反应的重要组成部分。
- TME Tumor microenvironment:肿瘤微环境,指肿瘤细胞及其周围细胞、细胞外基质等组成的复杂环境,对肿瘤的生长、转移和治疗反应有重要影响。
V
- VCAM1 vascular cell-adhesion molecule 1:血管细胞黏附分子1,参与免疫细胞与血管内皮细胞的黏附,促进免疫细胞的迁移。
- VEGFC Vascular endothelial growth factor C:血管内皮生长因子C,参与淋巴管生成和血管生成,与肿瘤的生长和转移相关。
- VTP Vascular targeting peptide:血管靶向肽,能够特异性结合肿瘤血管内皮细胞的肽段,用于靶向肿瘤血管的治疗或成像。