Open3D 点云的均匀下采样

目录

一、概念

二、代码实现

三、结果展示

3.1原始点云

3.2降采样后的点云

3.3数据变化


 Open3D点云算法汇总及实战案例汇总的目录地址:

Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客


一、概念

        Open3D是一个流行的3D数据处理库,提供了强大的点云处理功能。点云的均匀下采样(Uniform Downsampling)是其中一个重要的操作,它通过在点云中均匀地选择一些点来减少数据量,从而加速后续的处理步骤并降低计算复杂度。

        均匀下采样的基本原理是从原始点云中每隔一定数量的点选择一个点,从而生成一个下采样后的点云。这个过程可以通过指定一个间隔值(采样步长)来控制。例如,如果间隔值为2,则每隔2个点选择一个点。这样做的目的是在保持点云的整体形状和结构的同时,减少点的数量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值