Open3D 点云配准-loss函数优化的ICP配准算法(精配准)

目录

一、概述

1.1ICP的基本步骤

1.2损失函数的设计

二、代码实现

2.1关键函数

2.2完整代码

三、实现效果

3.1原始点云

3.2配准后点云

3.3计算数据


 Open3D点云算法汇总及实战案例汇总的目录地址:

Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客


一、概述

        ICP(Iterative Closest Point)配准算法是一种用于对齐两个点云的经典算法。其目标是通过迭代优化,使得源点云与目标点云之间的距离最小化。在这个过程中,优化的关键是设计一个合适的损失函数,并通过优化该损失函数来获得最优的变换矩阵(包括旋转和平移)。

1.1ICP的基本步骤

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值