Asset Pricing:State Price and Risk-Neutral Probability

Asset Pricing:State Price and Risk-Neutral Probability

State Price

完备市场下: q s = q ( e s ) q_s=q(e_s) qs=q(es)

z = ∑ s = 1 S z s e s , q ( z ) = ∑ s = 1 S z s q ( e s ) = q ⋅ z z=\sum_{s=1}^Sz_se_s,q(z)=\sum_{s=1}^Sz_sq(e_s)=q·z z=s=1Szses,q(z)=s=1Szsq(es)=qz

不完备市场下:
q s ≡ Q ( e s ) q_s\equiv Q(e_s) qsQ(es)
If Q ≥ 0 , q s ≥ 0 Q\geq0,q_s\geq0 Q0,qs0 ; if Q > 0 , q s > 0 Q>0,q_s>0 Q>0,qs>0

对每个未定权益 z ∈ R S , z = ∑ s z s e s z\in R^S,z=\sum_sz_se_s zRS,z=szses,所以有:
Q ( z ) = Q ( ∑ s z s e s ) = ∑ s z s Q ( e s ) = ∑ s z s q s = q ⋅ z Q(z)=Q(\sum_sz_se_s)=\sum_sz_sQ(e_s)=\sum_sz_sq_s=q·z Q(z)=Q(szses)=szsQ(es)=szsqs=qz
因为 Q ( x j ) = p j Q(x_j)=p_j Q(xj)=pj,所以有:
p j = q x j p = X q p_j=qx_j\\p=Xq pj=qxjp=Xq
状态价格是含 S S S 个未知量 q s q_s qs J J J 个方程组的解。

if market is complete , J ≥ S , r a n k ( X ) = S → ∃ J\geq S,rank(X)=S\to\exist JS,rank(X)=S 唯一的 q > > 0 q>>0 q>>0

if market is incomplete , r a n k ( X ) < S rank(X)<S rank(X)<S , multiple q > > 0 q>>0 q>>0 is possible.

Theorem : p = X q p=Xq p=Xq​​​ has solution q>>0 iff ∃ Q ( z ) > 0 \exist Q(z)>0 Q(z)>0​​​ ; ∀ q > > 0 , ∃ Q > 0 , s . t .   ∀ z ∈ R S , Q ( z ) = q z \forall q>>0,\exist Q>0,s.t.\ \forall z\in R^S,Q(z)=qz q>>0,Q>0,s.t. zRS,Q(z)=qz

proof:上述等式已经证明,与严格为正的估值泛函相关的状态价格是等式 p = X q p=Xq p=Xq 的一个解。下面说明估值泛函的存在性。

suppose q > > 0 q>>0 q>>0​ 是 p = X q p=Xq p=Xq​ 的解,then Q ( z ) = q ⋅ z Q(z)=q·z Q(z)=qz​ is linear and strictly positive. Let z ∈ M , ∃ h , z = h X , Q ( z ) = q z = q ⋅ h ⋅ X = h ⋅ X ⋅ q = p h = q ( z ) z\in M,\exist h,z=hX,Q(z)=qz=q·h·X=h·X·q=ph=q(z) zM,h,z=hX,Q(z)=qz=qhX=hXq=ph=q(z)​ , 即 Q Q Q M M M 上的收益定价泛函一致 .So Q ( z ) Q(z) Q(z)​ is strcitly positive valuation functional.

Fundamental Theorem of Finance : NA iff ∃ q > > 0 \exist q>>0 q>>0 , NSA iff ∃ q > 0 \exist q>0 q>0

Example:

x 1 = ( 1 , 1 , 1 ) , p 1 = 1 / 2 ; x 2 = ( 1 , 2 , 4 ) , p 2 = 1 x_1=(1,1,1),p_1=1/2;x_2=(1,2,4),p_2=1 x1=(1,1,1),p1=1/2;x2=(1,2,4),p2=1 . Does Market exclude Arbitrage?

→ q 1 + q 2 + q 3 = 1 / 2 , q 1 + 2 q 2 + 4 q 3 = 1 → q 1 = 2 q 3 , q 2 = 1 / 2 − 3 q 3 \to q_1+q_2+q_3=1/2,q_1+2q_2+4q_3=1\to q_1=2q_3,q_2=1/2-3q_3 q1+q2+q3=1/2,q1+2q2+4q3=1q1=2q3,q2=1/23q3

q 3 > 0 , 2 q 3 > 0 , 1 / 2 − 3 q 3 > 0 → 0 < q 3 < 1 / 6 q_3>0,2q_3>0,1/2-3q_3>0\to 0<q_3<1/6 q3>0,2q3>0,1/23q3>00<q3<1/6​​。此时NA。

0 ≤ q 3 ≤ 1 / 6 0\leq q_3\leq1/6 0q31/6,此时NSA。

Farkas-Stiemke Cemma :

suppose y , a ∈ R m , b ∈ R n , Y ∈ R m × n y,a\in R^m,b\in R^n,Y\in R^{m\times n} y,aRm,bRn,YRm×n

Theorem ( Farkas ): 不存在 a ∈ R m a\in R^m aRm,满足 a Y ≥ 0 , a y < 0 aY\geq0,ay<0 aY0,ay<0 的充要条件是当且仅当 ∃ b ∈ R n , s . t .   y = Y b , b ≥ 0 \exist b\in R^n,s.t.\ y=Yb,b\geq0 bRn,s.t. y=Yb,b0

Theorem ( Stiemke ): 不存在 a ∈ R m a\in R^m aRm​,满足 a Y ≥ 0 , a y ≤ 0 aY\geq0,ay\leq0 aY0,ay0​,其中或者 a Y > 0 aY>0 aY>0​,或者 a y < 0 ay<0 ay<0​ 的充要条件是当且仅当 ∃ b ∈ R n , s . t .   y = Y b , b > 0 \exist b\in R^n,s.t.\ y=Yb,b>0 bRn,s.t. y=Yb,b>0​​

状态价格和取值的界

对于未定权益 z ∈ R S , z ∉ M z\in R^S,z\notin M zRS,z/M
q l ( z ) = max ⁡ h { p h : z ≥ h X } q u ( z ) = min ⁡ h { p h : z ≤ h X } π ∈ [ q l ( u ) , q u ( z ) ] , Q ( z ) = q ( z ) + λ π q_l(z)=\max_h\{ph:z\geq hX\}\\q_u(z)=\min_h\{ph:z\leq hX\}\\\pi\in[q_l(u),q_u(z)],Q(z)=q(z)+\lambda\pi ql(z)=hmax{ph:zhX}qu(z)=hmin{ph:zhX}π[ql(u),qu(z)],Q(z)=q(z)+λπ
p = X q , p h = X q h = q z p=Xq,ph=Xqh=qz p=Xq,ph=Xqh=qz
q l ( z ) = min ⁡ q > 0 { q z : p = X q } q u ( z ) = max ⁡ q > 0 { q z : p = X q } q_l(z)=\min_{q>0}\{qz:p=Xq\}\\q_u(z)=\max_{q>0}\{qz:p=Xq\} ql(z)=q>0min{qz:p=Xq}qu(z)=q>0max{qz:p=Xq}
Risk-Neutral Probability

Risk-Free Asset : X = ( 1 , 1 , ⋯   , 1 ) X=(1,1,\cdots,1) X=(1,1,,1)

Risk-Free return: r ˉ = 1 P b = 1 ∑ s = 1 S q s x s = 1 ∑ s = 1 S q s \bar r=\dfrac{1}{P_b}=\dfrac{1}{\sum_{s=1}^Sq_sx_s}=\dfrac{1}{\sum_{s=1}^Sq_s} rˉ=Pb1=s=1Sqsxs1=s=1Sqs1

假设证券价格无套利(强套利),具有严格正回报无风险收益 r ˉ \bar r rˉ 属于资产张成空间。令 q q q 是严格为正(为正)的状态价格向量,对每个 s s s,定义:
π ^ s ≡ r ˉ q s = q s ∑ s = 1 S q s ∈ ( 0 , 1 ) ∑ s = 1 S π ^ s = 1 \hat\pi_s\equiv\bar rq_s=\dfrac{q_s}{\sum_{s=1}^Sq_s}\in(0,1)\\\sum_{s=1}^S\hat\pi_s=1 π^srˉqs=s=1Sqsqs(0,1)s=1Sπ^s=1
π ^ s → \hat\pi_s\to π^s​ risk-neutral probability
p j = ∑ s = 1 S q s x s j = ∑ s = 1 S q s ∑ s = 1 S q s ∑ s = 1 S q s x s j = 1 r ˉ ∑ s = 1 S q s ∑ s = 1 S q s x s j = 1 r ˉ ∑ s = 1 S π ^ s x s j = 1 r ˉ E ∗ ( x j ) r ˉ = E ∗ ( r j ) Q ( z ) = q z = ∑ s q s z s = 1 r ˉ ∑ s π ^ s z s = 1 r ˉ E ∗ ( z ) p_j=\sum_{s=1}^Sq_sx_s^j=\sum_{s=1}^Sq_s\sum_{s=1}^S\dfrac{q_s}{\sum_{s=1}^Sq_s}x_s^j\\=\dfrac{1}{\bar r}\sum_{s=1}^S\dfrac{q_s}{\sum_{s=1}^Sq_s}x_s^j=\dfrac{1}{\bar r}\sum_{s=1}^S\hat\pi_sx_s^j=\dfrac{1}{\bar r}E^*(x^j)\\\bar r=E^*(r_j)\\Q(z)=qz=\sum_sq_sz_s=\frac{1}{\bar r}\sum_s\hat\pi_sz_s=\frac{1}{\bar r}E^*(z) pj=s=1Sqsxsj=s=1Sqss=1Ss=1Sqsqsxsj=rˉ1s=1Ss=1Sqsqsxsj=rˉ1s=1Sπ^sxsj=rˉ1E(xj)rˉ=E(rj)Q(z)=qz=sqszs=rˉ1sπ^szs=rˉ1E(z)
可以将未定权益取值的上界和下界表示为:
q u ( z ) = 1 r ˉ max ⁡ π ^ E ∗ ( z ) q l ( z ) = 1 r ˉ min ⁡ π ^ E ∗ ( z ) q_u(z)=\frac{1}{\bar r}\max_{\hat\pi}E^*(z)\\q_l(z)=\frac{1}{\bar r}\min_{\hat\pi}E^*(z) qu(z)=rˉ1π^maxE(z)ql(z)=rˉ1π^minE(z)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值