基于R包
PCA R绘图 vegan
### 输入文件的格式处理
>head(dataT)
sp1 sp2 sp3 sp4 ...
sample1 相对丰度
sample2
sample3
...
>dataTD=decostand(data,"hell") ## 数据的标准化“采用total标准化以后再取平方根”
>pca1=rda(dataTD) ## RDA冗余分析
>pc1=c(pca1$CA$eig/sum(pca1$CA$eig))[1]*100 ## 计算第一主成分
>pc2=c(pca1$CA$eig/sum(pca1$CA$eig))[2]*100 ## 计算第二主成分
##绘制散点图
>plot(pca1,display="si",scaling=1,type="n", main="")
>points(pca1, dis="si", scaling=1,col=c("#C1E168", "#C1E168", "#C1E168", "#FD9347" ),pch=c(15, 15, 15, 17 ),cex=1)
##legend("bottomright", legend=levels(groups$g1), col=mycol, =shape,bty="n",cex=0.8) ##添加图例
> ordispider(pca1,groups = groups$group,display = "si", scaling=1,col = mycol)
#添加辅助线,ordispider把项目组合至它们的(加权