车联网中基于轨迹预测的无人机动态协同优化覆盖算法

本文提出了一种利用轨迹预测信息的无人机动态预部署方案,以解决车联网基站覆盖空洞和流量过载问题。通过分布式联邦学习和区块链架构,无人机节点使用Seq2Seq-GRU模型进行轨迹预测,改进的虚拟力向导部署算法则优化无人机部署,提升车辆接入率和通信质量。仿真结果显示,提出的训练框架加速了模型训练,部署算法提高了车辆接入率和通信质量。
摘要由CSDN通过智能技术生成

本文由吴壮,唐伦,蒲昊,汪智平,陈前斌联合创作

摘要

针对城市车联网中出现的基站覆盖空洞及局部流量过载等问题,该文提出了一种基于车辆轨迹预测信息的动态预部署方案。首先,为了训练得到统一的 Seq2Seq-GRU 轨迹预测模型,多个携带边缘计算服务器的无人机在分布式联邦学习与区块链的架构下,去除中心聚合节点,采取改进的 Raft 算法,在每轮训练中根据贡献数据量的大小,选举得到节点来完成参数聚合及模型更新任务。其次,基于模型预测结果,提出了一种改进的虚拟力向导部署算法,通过各虚拟力来引导无人机进行动态地部署以提升车辆的接入率及通信质量。仿真结果表明,所提出的训练架构能够加速模型的训练,部署算法在提升车辆接入率的同时提升了车辆与无人机之间的通信质量。

0 引言

近些年来,随着我国经济的发展、城市人均生活水平的提升,城区中的车流量迅速增加。车联网作为汽车与电子信息技术融合的新范式,旨在通过人工智能与信息通信技术, 解决城市拥堵、安全驾驶等方面的问题。未来的现代智能交通系统(ITS, intelligent transportation system)亟需智能、便捷、安全可靠的车联网环境。然而,在城市的复杂环境中,各种城市建设、障碍物及难以靠近的区域等因素会造成基站覆盖空洞、通信链路质量差等问题。此外,因上下班高峰期,车祸,道路施工等原因造成的城市道路拥堵,局部流量热点的问题会对车联网低时延,高可靠的要求造成严重威胁。

针对以上问题,有学者提出的利用无人机等空中节点以辅助地面车辆通信成为一种趋势。国家将于 2030 年实现 6G 网络的商用化,空天地一体化网络作为其中的重要一环,旨在通过空中节点实现全域覆盖。无人机因其价格低廉、灵敏便捷等优点被广泛用于农业、安检、通信、救灾等领域。它不仅可以实现快速适应各种环境,作为空中节点,还能够实现城市范围内复杂环境的大规模覆盖,是未来 6G 通信网的重要一环。此外,基站及路侧单元(RSUs,Road Side Units) 虽然已经为车联网提供了通信的保障,但其无法及时地应对处理上述问题,而无人机的高机动性和灵活部署与调整,在解决覆盖空洞、应急通信有着明显优势。无人机辅助基站,可以更好地为 ITS 服务。

车联网中有效的网络接入、网络流量预测是无人机部署与协调组网的关键,但是车联网中的流量数据难以获取,由于车联网中车辆终端设备的业务大多是周期性的广播业务,网络流量较稳定,同时一定区域内的网络流量与车辆数据之间有很强的相关性。因此,对于车联网中的网络接入,网络覆盖,流量分布等,本文使用城市中的车辆迁移趋势,车辆位置信息等描述车联网中的网络接入与流量预测。

目前已有大量学者针对无人机作为空中基站部署,主要分为对无人机的三维空间的部署的研究,能量优化下无人机飞行轨迹的研究。研究了无人机辅助地面基站的边缘小区用户,通过优化无人机的轨迹及无人机与地面基站之间带宽分布、用户划分,最大化小区中所有用户的最小吞吐量。研究了多无人机系统下无人机支持多用户的通信调度及用户关联的优化问题,通过将问题进行分解,加快算法的收敛速度并提升了吞吐量。然而这些场景均没有考虑用户的位置会随时间的变化而发生变化,当用户的位置变化时,整个系统的通信的吞吐量会发生变化。车联网下车辆轨迹预测的研究主要集中在用神经网络去学习车辆的移动特性从而去预测可能移动的位置。张等人运用时空残差网络(ST- ResNet),并结合外部因素如天气、周内周末等,在北京出租车与纽约共享单车轨迹数据集,该网络结构能很好地预测城市中各区域车辆轨迹。张等人首次利用 CNN 提取城市中个区域交通流量的空间相关性,研究了基于时空部分与全局部分的时空预测模型(DeepST),在数据集上验证了其网络模型对于捕获时空特性的优势。城市中基于蜂窝网络的业务流量时空分布及预测研究中,章等人设计了时空密集连接卷积神经网络进行城市蜂窝流量预测。通过意大利电信数据集的验证,得到各个业务有很大的时间周期性,不同城市区域的同一业务存有差异。张等人设计了一种时空跨域神经网络(STCNet)。通过收集基站信息,POI 分布,社会活动及与之相关的短信、呼叫、因特网蜂窝业务数据进行相关性分析与研究步量化跨区域数据集和蜂窝流量之间的空间相关性,计算了 Pearson 相关系数,得到三种蜂窝业务数据之间存在一定的相似性,蜂窝业务还受到基站数目、小区 POI 等影响。基于此,设计的 STCNet 网络可以捕捉蜂窝流量的时空依赖关系及外部影响因素,具有良好的预测性能。对于车辆轨迹预测和业务服务部署的研究,Dalgkitsis设计了四层结构的网络架构:数据中心、区域服务器、边缘计算服务器、车辆。通过利用CNN 进行车辆移动轨迹的预测,采用遗传算法将车联网中车辆服务进行动态的迁移到距离车辆最近的边缘服务器, 以满足用户的服务质量要求。然而没有考虑将数据放在中心位置进行训练,带来的通信上开销及数据隐私泄露等问题。

针对以上的训练数据隐私保护,无人机部署未考虑车辆用户的空间分布变化,多无人机之间协作等问题。本文的主要贡献总结如下:

1) 设计了一种基于分布式联邦学习与区块链的训练学习框架。在该框架下,多个具备边缘计算能力的无人机利用本地车辆轨迹数据进行训练,同时舍去传统联邦学习框架中的参数聚合节点,无人机采取改进的 Raft 算法竞争当选聚合服务器完成参数聚合的任务,并将更新参数保存在统一维护的区块链中;各无人机节点下载获取参数继续训练直至完成训练任务。

2) 提出了一种改进的虚拟力向导算法。该算法将无人机建模成相互之间有引力与斥力作用的电荷,将地面车辆用户建模成分散在各个位置上的电荷,其对无人机也有引力作用; 无人机对其他无人机的引力设计中,无人机的能量及无人机覆盖区域内车辆数目会影响库仑力的比例系数,无人机对其他无人机的斥力设计中,安全距离是其比例系数,斥力保证无人机之间不发生碰撞;地面车辆对无人机的引力设计中,考虑车辆的分布位置,力的方向是从车辆指向无人机,保证无人机部署在车辆群体的中心位置上;各无人机在各力的牵引作用下,部署在合力为零的位置。

1 系统模型及问题表述

1.1 系统模型

如图 1 所示,考虑城市内基站覆盖空洞地区及局部流量过载区域,如路面交通堵塞区域,需要多台无人机协助基站完成该区域的覆盖优化。将热点区域划分为 H ´W 个区域,被划分的小区域集合为

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值